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ABSTRACT 

Markov chains are an application of stochastic models in operation research, helping the analysis and 
optimization of processes with random events and transitions. The method that will be deployed to obtain 
the transient solution to a Markov chain problem is an important part of this process. The present paper 
introduces a novel Ordinary Differential Equation (ODE) approach to solve the Markov chain problem. 
The probability distribution of a continuous-time Markov chain with an infinitesimal generator at a given 
time is considered, which is a resulting solution of the Chapman-Kolmogorov differential equation. This 
study presents a one-step second-derivative method with better accuracy in solving the first-order Initial 
Value Problems (IVPs) compared to other approaches found in the literature, which is verified by the 
obtained solutions. The determination of the transient solutions for Markov chains is presented using the 
proposed method. The results show better accuracy in solving the transient distribution in Markov chains, 
which implies that there is an improved assurance in adopting this approach in future studies of the 
Markov chain modeling process for predicting future events based on the current state of a process. Future 
studies on Markov chain modeling could adopt the introduced method to predict future events based on 
the current state of a process. 

Keywords-transient distribution; Chapman-Kolmogorov; differential equation; numerical method; initial 

value problem 

I. INTRODUCTION  

A description of the various states a physical system can 
occupy represents this system’s behavior and specifies its 
movement in time from one state to another. If the property of 
exponential distribution applies to the time spent in any state, 
Markov processes may be used in the representation of the 
system [1, 2]. In definition, a stochastic process whose 
conditional probability distribution function satisfies the 
Markov property is called a Markov process. According to the 
Markov property, the future evolution of a system depends on 
its current rather than on its past state [3-5]. The Markov 
process is referred to as a Markov chain when the state space of 
the Markov process, which is mostly defined as a set of natural 
integers or its subset, is discrete [6, 7]. The computation of the 
probability of being in a given state or subset of states at a 
certain time after the system becomes operational is usually the 
main objective when considering Markov chains. The 
probabilities at a particular time are called transient 
probabilities and for situations where the number of states is 
small, one can easily obtain transient solutions which will give 
information about the behavior of the system, but the solution 
process becomes more tasking as the models become more 
complex [1, 8]. The methods being used to obtain transient 
solutions for Markov chain problems broadly range from the 

decomposition and matrix-scaling methods [9, 10] to the ODE 
solvers [11-13] and the uniformization method [11, 14, 15]. 
According to [12], the use of ODE solvers is more 
advantageous compared to other methods, because the existing 
numerical methods for solving ODEs apply to Markov chains 
whose infinitesimal generators are a function of time, Q(t), that 
is, to non homogeneous Markov chains. The vector π(t) of all 
such probabilities is given by: 

( ) (0)
Qtt e      (1) 

where eQt
 is given by: 

 
0

/ !
kQt

k

e Qt k
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
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The vector π(t) is the solution of the Chapman-Kolmogorov 
differential equation: 

( ) ( ) ;  ( 0) (0)t t Q t          (3) 

Equation (3) takes the form of a first-order IVP, which is a 
type of ODE [16, 17]. Authors in [1] presented some numerical 
methods that have already been used as ODE solvers in 
Markov chain problems. These include the Euler method and 
its variants, which were also studied in [18], where the 
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solutions of transient distribution in Markov chains using 
trapezoid and Euler methods were explored. In [11], a 
numerical method was adopted for the solution of a 
continuous-time Markov chain model implementing the 
Runge-Kutta and forward Euler methods, while in [19], several 
methods for obtaining transient solutions were discussed, 
including the unmodified and modified Euler method. Authors 
in [1] presented the Taylor series method [20, 21], the Runge-
Kutta method [11, 12, 19], and some multistep methods [20, 
22, 23]. 

As observed from the relevant literature, there is a dearth in 
the studies on ODE solvers to obtain transient solutions in 
Markov chains. Thus, the current study aims to introduce a new 
numerical method as an ODE solver for (3). The developed 
method is a one-step second-derivative method, whose 
improved accuracy over the existing approaches will be 
validated by considering certain first-order problems found in 
the literature and comparing the results to those of existing 
studies. The flowchart illustrated in Figure 1 shows the phases 
involved in achieving this paper’s objective. 

 

 
Fig. 1.  The solution phases. 

II. METHODOLOGY 

A. Development of One-Step Second-Derivative Method 

To solve the differential equation (3), according to [24], the 
required linear multistep method will be developed from: 

1 0 1 1 0 1 1n n n n n n                    (4) 

where α0, α1, β0, and β1 are the coefficients of the function, π'n, 
π'n+1, π''n, and π''n+1 are the first and second derivatives of the 
function terms, respectively, and the subscript n+1 shows the 
method as a one-step method. 

To obtain the values of the coefficients α0, α1, β0, and β1, 
the π-terms are individually expanded using Taylor series 
expansions such that (4) becomes: 
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Comparing the coefficients of π
n
(tn) and rewriting them in a 

matrix form gives: 
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The resulting values of α0, α1, β0, and β1, obtained using the 
matrix inverse method, are: 
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Therefore, the resulting one-step second-derivative method 
in (4) is given as: 

1 1 1

2 2

2 2 12 12
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B. Analysis of Convergence Properties for One-Step Second-
Derivative Method 

The properties of consistency and zero-stability are the 
premises to ensure convergence. For the first condition of 
consistency, a linear multistep method is said to be consistent if 
it has an order greater than or equal to 1, while the second 
condition of zero-stability requires that no root of its first 
characteristic polynomial has a modulus greater than one, and 
every root with modulus one is simple [24]. To test the 
consistency of the resultant method in (7), each π-term is 
expanded using Taylor series expansions such that (7) 
becomes: 
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Then simplifying the coefficients of π
n
(tn) on the left-hand-

side of the equation gives the following values: 
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The first non-zero value was obtained as h5
/720, which 

implies that the one-step second-derivative method is of order 4 
with an error constant of 1/720 [24]. Hence, the first condition 
for the stability of a linear multistep method is satisfied. 

On the other hand, the first characteristic polynomial of the 
method the zero-stability of which is required to be tested is 
obtained from the non-derivative terms of (7) as π(r) = r – 1 
with roots r = 1 . Since no root of the first characteristic 
polynomial has a modulus greater than one, the one-step 
second-derivative method is zero-stable. Therefore, the method 
has satisfied all premises required for a linear multistep method 
to be convergent. 

Having justified the convergence of the method, its region 
of absolute stability is investigated. Considering the one-step 
second-derivative method in (7), the stability region is obtained 
by plotting the loci of the roots of the stability polynomial: 
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 (9) 

The region of absolute stability is determined by plotting 
the roots of the polynomial using the boundary locus approach, 
as depicted in Figure 2. 

 

 
Fig. 2.  Region of absolute stability for one-step second-derivative method. 

The region outside the line is the stable region of the 
method. In reference to the definition that a multistep method is 
A-stable if its region of absolute stability contains the whole of 
the left-hand half-plane [24, 25], the one-step second-derivative 
method is A-stable, and therefore suitable for solving first-
order IVPs, especially stiff IVPs. Since its basic properties are 
verified, the accuracy of the developed method is now 
validated by comparing it with existing methods in the 
literature for solving first-order IVPs. 

C. Solution of First Order IVPs 

1) Problem 1 [26] 

          
 

2100 cos sin ,  0 1,  0,1 .

Exact Solution: cos

y x y x x y x

y x x
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Authors in [26] recorded the maximum absolute error 
obtained at x = 1 with h = 10

-1
, 10

-2
, and 10

-3
 using a fourth-

order method. Comparing the corresponding values with those 
obtained using a one-step second-derivative method, as shown 
in Table I, it appears that the latter results in smaller maximum 
absolute errors of 1.438683e – 11, 5.440093e – 15, and even 
the same value as the exact solution at h = 10

-3
, with a 

corresponding maximum absolute error of 0.000000e + 00. 

TABLE I.  SOLUTION COMPARISON FOR PROBLEM 1 

h 
Maximum 

Absolute Error [26] 
Maximum Absolute Error (One-Step 

Second-Derivative Method) 
10-1 5.86307e – 7 1.438683e – 11 

10-2 5.71593e – 9 5.440093e – 15 

10-3 3.33170e – 11 0.000000e + 00 

 

2) Problem 2 [26] 
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Authors in [26] recorded the maximum absolute error 
obtained at x = 2 with h=10

-1
, 10

-2
, and 10

-3
 using an order 

four/a fourth-order method. Comparing the corresponding 
values with those obtained using a one-step second-derivative 
method, as portrayed in Table II, it appears that the second 
method results in smaller maximum absolute errors of 
3.885781e – 15 and 0.000000e + 00, which implies that the 
same value as that of the exact solution was obtained at h = 10

-2
 

and 10
-3

. 

TABLE II.  SOLUTION COMPARISON FOR PROBLEM 2 

h 
Maximum 

Absolute Error [26] 
Maximum Absolute Error (One-Step Second-

Derivative Method) 
10-1 1.26594e – 8 3.885781e – 15 

10-2 1.12913e – 10 0.000000e + 00 

10-3 9.95981e – 13 0.000000e + 00 
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3) Problem 3 [27] 
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Authors in [27] recorded the absolute error obtained over 
the interval with h=0.1 using a three-step order four/fourth-
order method. The results obtained using the one-step second-
derivative method, were smaller at all points recorded and also 
displayed better convergence to the exact solution as x→1, as 
outlined in Table III. 

4) Problem 4 [28, 29] 

     
 

,  0 1,  0,1 .

Exact Solution: 
x

y x y y x

y x e

   


 

In both studies [28, 29], authors presented new Runge-
Kutta approaches for solving Problem 4, where the former 
introduced a fifth-stage fourth-order Runge–Kutta formula and 
the latter developed a four-stage harmonic Runge-Kutta 
scheme. The one-step second-derivative method outperformed 
the two Runge-Kutta approaches with smaller absolute error 
values, as presented in Table IV. This improved accuracy is 
attributed to the introduction of the higher derivative terms π''n 
and π''n+1, in contrast to other approaches that are limited to 
terms of the form π'n and π'n+1, when considering first-order 
IVPs. Hence, based on the obtained results, the validation 
phase of the one-step second-derivative method for solving 
first-order ODEs is complete. 

TABLE III.  SOLUTION COMPARISON FOR PROBLEM 3 

x  Exact Solution Absolute Error [27] Absolute Error (One-Step Second-Derivative Method) 
0.1 0.099667994624955833 2.01e – 06 2.15083e – 07 

0.2 0.197375320224904010 1.95e – 06 3.890244e – 07 

0.3 0.291312612451590960 1.86e – 06 4.856380e – 07 

0.4 0.379948962255224950 3.66e – 06 5.011775e – 07 

0.5 0.462117157260009790 3.36e – 06 4.439289e – 07 

0.6 0.537049566998035300 3.05e – 06 3.374950e – 07 

0.7 0.604367777117163500 2.67e – 06 2.097013e – 07 

0.8 0.664036770267848910 2.35e – 06 8.491983e – 08 

0.9 0.716297870199024360 2.04e – 06 2.018992e – 08 

1.0 0.761594155955764850 1.16e – 06 9.749062e – 08 

TABLE IV.  SOLUTION COMPARISON FOR PROBLEM 4 

x  Absolute Error [28] Absolute Error [29] Absolute Error (One-Step Second-Derivative Method) 
0.1 3.5914189400e – 8 3.11266882e – 7 1.535873e – 8 

0.2 7.9382633800e – 8 9.88006115e – 7 3.394805e – 8 

0.3 1.3159706524e – 7 1.14054636e – 6 5.627759e – 8 

0.4 1.9391632944e – 7 1.68066466e – 6 8.292848e – 8 

0.5 2.6788835550e – 7 2.32177680e – 6 1.145627e – 7 

0.6 3.5527489772e – 7 3.07915181e – 6 1.519336e – 7 

0.7 4.5807939175e – 7 3.97015331e – 6 1.958980e – 7 

0.8 5.7857830127e – 7 5.01451127e – 6 2.474295e – 7 

0.9 7.1935638957e – 7 6.23462765e – 6 3.076334e – 7 

1.0 8.8334638759e – 7 7.65592021e – 6 3.777638e – 7 

 

III. APPLICATION OF THE ONE-STEP SECOND-

DERIVATIVE METHOD TO MARKOV CHAIN 

The application of the developed method to the Markov 
chain is discussed below, using examples from various 3x3 
infinitesimal generators. The initial condition and length of the 
interval of integration are defined, and the results are given in 
terms of the 2-norm absolute error. 

A. Illustrative Example 1 [18] 

   

 

2 1 1

3 8 5 ,  0 1,0,0  and the length of the

1 2 3
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Table V presents the results per iteration for solving the 
Illustrative Example 1 although the numerical values for some 
points were not presented in [18]. However, the information 
required to compute the 2-norm absolute error with respect to 
the exact solution is available, and hence the 2-norm absolute 
error is computed. From Table VI, it can be observed that the 
one-step second-derivative method is more accurate than the 
approach it was compared with. To further justify the 
advantage/advantages of the one-step second-derivative 
method, a second Illustrative Example is considered. 

B. Illustrative Example 2 [18] 
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Table VII gives the results per iteration for solving the 
Illustrative Example 2. The numerical values at all points are 
presented and the information required to compute the 2-norm 
absolute error with respect to the exact solution is extracted and 
utilized for the error computation. 

Table VIII shows consistency in the results produced by the 
one-step second-derivative method. The approach is more 
accurate than the approach it was compared with, as seen in/by 
the smaller value of the 2-norm absolute error. 

TABLE V.  SOLUTION COMPARISON FOR EXAMPLE 1 

t π(t) [18] π(t) (One-Step Second-Derivative Method) 
0.1 (0.832370,0.072254,0.95376) (0.8342907645,6.959787892x10-2,9.611135661x10-2) 

0.2 (0.717665,0.105750,0.176585) (0.7198979374,0.1036960506,0.1764060120)  

0.3 (0.637332,0.123417,0.239251) (0.6394508714,0.1221626589,0.2383864696)  

0.4 - (0.5822915763,0.133144394,0.2845640295)  

0.5 - (0.5414518541,0.1401691768,0.3183789689)  

0.6 - (0.5121851683,0.1448895316,0.3429253000)  

0.7 - (0.4911787108,0.1481581371,0.360663152)  

0.8 - (0.4760884441,0.1504607607,0.3734507951)  

0.9 - (0.4652433341,0.1520983618,0.382658304)  

1.0 (0.456848,0.153361,0.389791)  (0.4574473139,0.1532690021,0.3892836839)  

TABLE VI.  EXACT SOLUTION AND 2-NORM OF ABSOLUTE ERROR FOR EXAMPLE 1 

Approach π(t) at t=1 || π(t1) – π1 ||2 
Exact Solution (0.457446207856865,0.153269223235319,0.389284568907817) 

[18] (0.456848,0.153361,0.389791) 7.88907e – 4 

One-Step Second-Derivative Method (0.4574473139,0.1532690021,0.3892836839) 1.433691418e – 6 

TABLE VII.  SOLUTION COMPARISON FOR EXAMPLE 2 

t π(t) [18] π(t) (One-Step Second-Derivative Method) 
0.1 (0.7,0.2,0.1) (0.7592225694,0.1276011605,0.1131762702)  

0.2 (0.54,0.21,0.25) (0.6041647534,0.1719824966,0.22385275)  

0.3 (0.445,0.196,0.359) (0.5022199119,0.1834762187,0.3143038694)  

0.4 (0.3866,0.1837,0.4297) (0.4342171269,0.183036688,0.382746185)  

0.5 (0.35033,0.1754,0.47427)  (0.3884073632,0.1790782535,0.4325143832)  

0.6 (0.327738,0.170113,0.502149)  (0.3573453443,0.1747557864,0.4678988693)  

0.7 (0.3136541,0.1667964,0.5195495)  (0.3361926793,0.1710840927,0.4927232280)  

0.8 (0.3048721,0.16472469,0.53040321)  (0.3217478437,0.1682545021,0.5099976542)  

0.9 (0.299395729,0.163432148,0.537172123)  (0.3118658673,0.1661765175,0.5219576152)  

1.0 (0.295980652,0.162626002,0.541393346)  (0.3050975640,0.1646906318,0.5302118043)  

TABLE VIII.  EXACT SOLUTION AND 2-NORM OF ABSOLUTE ERROR FOR EXAMPLE 2 

Approach π(t) at t=1 || π(t1) – π1 ||2 
Exact Solution (0.305095895857673,0.164690716304774,0.530213387837553) 

[18] (0.295980652,0.162626002,0.541393346) 1.457196556e – 2 

One-Step Second-Derivative Method (0.3050975640,0.1646906318,0.5302118043) 2.301614881e – 6 

 

IV. CONCLUSION 

This article has identified the scarcity in the studies on 
Ordinary Differential Equation (ODE) solvers, with the 
purpose of developing more accurate approaches for solving 
the transient distribution in Markov chain problems. For this 
reason, a one-step second-derivative method was introduced to 
obtain more accurate solutions than those of previous 
approaches. The use of higher derivate methods, such as the 
one-step second-derivative method has been adopted in various 
studies where it was required to attain approximate solutions to 
differential equations, especially ODEs. The results of those 
studies show that the introduction of higher derivatives 
improves the numerical accuracy of the solutions. Hence, to 
take advantage of that improved accuracy, a higher derivative 
method was developed and adopted for the solution of transient 
distribution in Markov chain models, which is yet to be 
explored in the literature. To justify the usability of the 

developed method, the latter was verified for convergence and 
validated by having been compared with existing methods for 
solving first-order Initial Value Problems (IVPs). The 
considered first-order IVPs included both linear and nonlinear 
IVPs. From the results it is observed that as ?????  tends to 
zero, the accuracy of the one-step second-derivative method 
increased such that the solution obtained became the same as 
the exact solution. This affirms that the zero-stability property 
was satisfied by the proposed method. Furthermore, a better 
accuracy over the existing methods was also observed. Based 
on its performance in solving first-order IVPs, the one-step 
second-derivative method was then implemented as an ODE 
solver for the selected Markov chain problems. The 2-norm 
absolute error for both Illustrative Examples considered was 
displayed. The one-step second-derivative method obtained 
better and smaller errors in both examples. Overall, the 
proposed one-step second-derivative method’s has 
demonstrated better accuracy for solving first-order IVPs in 
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general and it is also suitable for application to obtain an 
approximate solution for transient distribution in the Markov 
chain. Its practical application to Markov chains and its 
extension to non-Markovian or more complex stochastic 
models can be considered in future studies. 
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