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ABSTRACT 

Object tracking is a crucial feature of video surveillance systems that are essential for maintaining 

awareness and detecting potential threats. Advanced solutions are needed to overcome the obstacles 

associated with video object tracking, including the complexity of everyday environments and the massive 

amount of data. Traditional tracking algorithms often struggle with the complexity of dynamic situations, 

necessitating the use of deep learning methods. This paper presents an innovative deep learning-based 

object tracking system that uses Multi-Level Glow-Worm Swarm Convolution Neural Networks (MLGS-

CNNs) to detect objects in video frames. Subsequent object tracking is facilitated by the adaptive Deep 

Simple Online Real-time Tracking (DeepSORT) algorithm by incorporating an optimized Kalman filter 

instead of a conventional Kalman filter. The Waterwheel Plant Optimization (WPO) method is used to 

tune the noise covariances of the Kalman filter to further improve the tracking accuracy. Comprehensive 

performance criteria, including metrics such as Multiple Object Tracking Accuracy (MOTA), Multiple 

Object Tracking Precision (MOTP), Integrated Detection and False-alarm Rate (IDF1), Mostly Tracked 

(MT), and Mostly Lost (ML), are used to evaluate the effectiveness of our method. 

Keywords-Waterwheel Plant Optimization (WPO), Kalman filter, adaptive DeepSORT 

I. INTRODUCTION  

Traditional video surveillance systems rely on fiber and 
cable connections that are costly to deploy and maintain on a 
large scale, but today's video transmissions mostly use wireless 
connectivity. In addition, object motion tracking is an 
important aspect in video surveillance applications because it 
provides temporal information about moving objects [1], and it 
is beneficial for a variety of reasons, including security through 
the use of video feeds [2]. Some of the most challenging 
aspects of discriminating between moving objects include 
varying lighting conditions, extended occlusions between 
moving objects, shadows, and non-stationary background 
objects. At a second level, object motion tracking approaches 
operate through appearance-based object segmentation and 
motion feature clustering [3]. To accomplish tasks such as 
background removal, each frame is examined in conjunction 
with a reference or background model. The detection of 
accurate object features (spatial accuracy) and the temporal 

stability of the detection (temporal coherency) are general 
requirements for a background removal algorithm. The 
minimum and maximum intensity values of each video clip are 
used to simulate the background scene during video tracking. 
Moreover, each pixel's greatest temporal component is 
immediately updated and recorded [4]. Shape analysis and 
tracking are combined to match each frontal object area to the 
current object collection [5]. The process of "object discovery" 
allows the identification of objects that are moving within an 
area, which is a prerequisite for a tracking method to work. 
Using existing object detection algorithms [6-11], tracking 
objects in images can be challenging due to a variety of factors, 
such as sudden object movements, scene or object changes, 
object shape changes, occlusion from the surrounding 
background, and illumination changes. Our work aims to 
proactively address these challenges by relying on deep 
learning to tackle the complexities of video object tracking. 
Deep learning helps our system detect intricate patterns, adapt 
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to dynamic conditions, and track objects across frames with 
unparalleled accuracy. 

The growing importance of video surveillance in numerous 
real-time applications was discussed in a study by the authors 
in [12]. The study examined developments in machine 
learning, specifically in the field of Multi-Object Detection and 
Tracking (MODT). Using an ideal Kalman filtering technique, 
the presented methodology offered a novel approach to MODT 
for tracking moving objects within video frames. Using the 
region growth model, video clips were transformed into 
morphological operations. Kalman filtering was then used to 
optimize the parameters using the probability-based 
grasshopper algorithm. A major limitation of the presented 
methodology is the lack of motion estimation methods in the 
MODT analysis. To address the growing concerns about 
security and surveillance, the authors in [13] proposed a video 
surveillance system that uses knowledge-based deep learning 
for enhanced multi-object tracking and recognition. To 
maintain recognition accuracy while increasing efficiency, they 
developed a method that combines optical flow while 
maintaining the recognition performance through a knowledge-
based Convolution Neural Network (CNN). The system's 
optical flow-based tracker can predict the position of objects in 
the next frame by combining a CNN-based detector with 
knowledge-based mining approaches for reliable object 
detection. However, further research is needed to create a 
surveillance system that can quickly identify numerous objects 
and detect their movements. Authors in [14] addressed people 
tracking in video surveillance by introducing a top-view-based 
approach. The technique uses a top-view camera and consists 
of four main modules: size estimation, tracking, 
standardization, and Binary Large Object (BLOB) detection. 
Through segmentation, statistical operations, connected 
component labeling, and morphological operations, the 
technique retrieves the foreground. To ensure rotation 
invariance, the retrieved BLOB was moved to an upright 
position using the radial symmetry of the top view. A drawback 
of this study is that it only considers scenarios with one person; 
therefore, further research is needed to cover multiple videos 
with different people. Authors in [15] presented a new metric 
for evaluating Multi-Object Tracking (MOT), Higher Order 
Tracking Accuracy (HOTA), which balances the importance of 

accurate detection, association, and localization. To provide a 
thorough examination of tracking performance, HOTA was 
broken down into sub-metrics that independently evaluated 
each of the five fundamental error categories. The study 
evaluated HOTA's performance against the MOTChallenge 
benchmark, demonstrating how well it can capture important 
MOT performance factors that other metrics cannot. The 
MOTChallenge is the only benchmark dataset focused on in 
this study, which is a limitation. Authors in [16] presented 
FairMOT as a solution to the problem of competing item 
detection and re-identification tasks in MOT. Although there 
are computational benefits to expressing MOT as a multi-task 
learning problem, the fundamental conflict between the 
detection and re-identification tasks can lead to biased results. 
Based on CenterNet's anchor-free object detection architecture, 
FairMOT provided a thorough method for balancing the 
importance of each task. Authors in [17] suggested a long-term 
tracking strategy with deep tracklet association. The study 
focused on employing tracklets to generate more 
comprehensive trajectories, while acknowledging the influence 
of detector performance on tracking. A high-confidence 
tracklet generation technique was presented by means of an 
iterative clustering process, which addresses problems such as 
fragmentation in crowded environments. In addition, a deep 
association technique was presented that learns long-term 
features for tracklet association using a Motion Evaluation 
Network (MEN) and an Appearance Evaluation Network 
(AEN). 

II. METHODOLOGY 

The present study proposes a new object tracking system 
using for video object tracking in surveillance systems using 
deep learning. The adaptive Deep Simple Online Real-time 
Tracking (DeepSORT) method is introduced to improve 
tracking after object detection with the use of advanced neural 
networks. The performance of DeepSORT is greatly improved 
by an optimized Kalman filter. In addition, Waterwheel Plant 
Optimization (WPO), an approach that helps fine-tune noise 
covariances, is used to achieve further improvement. The 
effectiveness of the proposed approach is evaluated in depth 
utilizing important metrics. Figure 1 shows the structure of the 
proposed method. 

 

 
Fig. 1.  Proposed methodology of object tracking in video surveillance systems. 
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A. Detecting Anomalous Events in Video Surveillance 
Systems 

The Multi-Level Glow-Worm Swarm Convolution Neural 
Network (MLGS-CNN) is used in the proposed approach for 
abnormal event detection in video surveillance systems. It 
enables automatic feature extraction and feature-based event 
class prediction. In order to identify dynamic foreground 
objects, the framework performs background extraction and 
frame conversion, which divides the input videos into 
segments. Then, MLGS-CNN is employed for prediction. 
Equations (1) and (2) define the video segments and the 
collection of all video events, respectively, and reflect the 
segmentation process in the computation. 
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where each segment ijS  consists of a specific N  number of 

frames. Due to the reduction in computational and comparison 
complexity, it is expected that each segment will have less than 
200 frames in total. The entire set of the video events iV  is 

represented as: 

 
1

N

i i i
V e


      (2) 

The definition of anomalous events and the number of 
events in a one-minute video clip are given by (3) and (4), 
respectively. The anomalous event ae  is stated as follows: 

a ie V      (3) 

and the number of anomalous events is stated as follows: 

   , , ,a i a i i aM M e e e V e     (4) 

The redundant information in these video frames is 
removed by assessing the similarity of the spatiotemporal 
variables across frames. The number of events in a one-minute 
video is estimated to be between 5 and 10, and the video 
volumes are approximations of long videos recorded over a 
long period of time. Static and dynamic pixel separation across 
frames is necessary for background extraction, which is 
essential for detecting anomalous events. To improve 
adaptation capacity and avoid overfitting, the prediction step 
uses the MLGS-CNN to iteratively optimize the CNN 
architecture and the hyperparameters using the Glow-Worm 
Swarm Optimization (GSO) algorithm. Unknown data are 
classified using the optimized CNN after the softmax 
classification layer of the CNN has determined the probability 
of events in each class. The suggested technique increases the 
accuracy of anomalous event detection in video surveillance 
systems by overcoming the shortcomings of traditional 
methods. 

B. Object Tracking in Video Surveillance Systems with 
Adaptive DeepSORT Algorithm 

In the next stage of object tracking, the output of the object 
detection model which typically consists of bounding boxes 
indicating where objects have been detected in an image or 
video frame, becomes a crucial input to the adaptive 
DeepSORT algorithm. Once the object detection model has 
identified objects and provided their spatial coordinates, 
adaptive DeepSORT steps in to ensure smooth and accurate 
tracking. Figure 2 illustrates the structure of the adaptive 
DeepSORT algorithm. Employing a variety of novel 
techniques, adaptive DeepSORT incorporates a Kalman filter 
for state prediction and the Hungarian algorithm for effective 
data association between predicted and detected objects. The 
Kalman filter algorithm is expressed as: 

1
kP A P A         (5) 

and it operates on the basis of the Kalman update given by: 

1 1 1( )T T
u k k cK P H H P H Q         (6) 

  0 0,
T

u c cz z K z y H z        (7) 

where cz , cy  are the center coordinates of the object, cQ  is the 

measurement noise covariance matrix, and uK  is the Kalman 

update. The equation described above indicates that the 
measured values obtained by the Kalman filter are more 
significant and closer to the estimated or real values. 

1 1k u kP K H P         (8) 

The measurement covariance matrix is expressed as: 

( )T
c k kQ E       (9) 

where k  is the measurement noise standard deviation. These 

formulas directly show that the measurement noise covariance 
matrix cQ  determines the Kalman gain. 

In the adaptive DeepSORT algorithm, the typical Kalman 
filter has been replaced by an optimized Kalman filter. This 
modification aims to improve the overall efficiency of the 
tracking algorithm, suggesting that the optimized version may 
provide more accurate and effective state predictions. The 
DeepSORT adaptive algorithm uses the optimized Kalman 
filter to estimate the track in each frame of a video sequence, 

where ˆˆˆ ˆ, , , , , , ,u h x y h   
   represents the velocity along each 

coordinate and expresses in image coordinates the height, 
position, aspect ratio, and associated velocity information of 

the bounding box center. Specifically, ˆˆˆ ˆ( , , , )x y h  indicates the 

velocity in the relevant dimensions, whereas ( , , , )u h   

indicates the spatial location of the bounding box. 

ˆˆˆ ˆ, , , , , , ,d u h x y h          (10) 
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Fig. 2.  The structure of adaptive DeepSORT algorithm. 

An optimized Kalman filter with linear observation and 
constant velocity is used. Whenever a new frame arrives, the 
position of each track is calculated based on its past positions. 
Only spatial data are used for track estimation. The approach 
computes the total number of frames from the last successful 
measurement association ( )K  for each tracked object, 

denoted by track K . When a favorable prediction is obtained 
via the Kalman filter, a counter is increased. This number is 
reset to 0 upon a successful association with a measurement. 
The method considers an object to have left the scene and 
removes its associated track when the counter for that track 
reaches a certain maximum maturity, indicating that the object 
has been tracked for too long without a recent association. To 
obtain appearance information from both detections and tracks, 
an appearance descriptor is used to extract features from 
detection images and track images in previous frames. To 
improve the discriminative strength of the appearance 
representation, this descriptor can extract features so that 
features of the same identity are closest to each other in the 
feature space, while features of other identities are clearly 
separated. WPO method was used in the adaptive DeepSORT 
algorithm to fine-tune the noise covariances of the Kalman 
filter. WPO is primarily used to optimize the parameters of the 
Kalman filter, particularly the noise covariances that are 
important for accurate modeling and tracking of object states. 
Section II.B.1 provides a detailed explanation of how the WPO 
approach was developed to enhance the noise covariances of 
the Kalman filter in the adaptive DeepSORT algorithm. 

The Hungarian algorithm is used to address the mapping 
problem between recently received measurements and 
predicted Kalman states. The Hungarian algorithm is useful in 
determining the best assignment of measurements to predicted 
states, taking into account the corresponding Mahalanobis 
distances. This mapping process considers both motion and 

appearance information, and calculates the Mahalanobis 
distance between them using (11): 

(1) 1( , ) ( ) ( )j T j
d d i i im i j m y S m y

d
     (11) 

where ( iy , iS ) are the projection of the j-th track in 

measurement space, and jm
d

 is the j-th new detection. 

In order to account for uncertainty, the Mahalanobis 
distance calculates the number of standard deviations the 
detection point is far away from the average track location. 
Using this metric, improbable correlations can be removed by 
thresholding the Mahalanobis distance. The decision is 
expressed by an indicator, denoted in (12), which calculates to 
1 if the association between the i-th track and the j-th detection 
is considered acceptable. In other words, if the Mahalanobis 
distance is less than a certain threshold, it means that the 
relationship between the track and the detection is considered 
acceptable, contributing to a more reliable data association 
phase in the tracking process. 

(1) (1) (1)
, 1 ( , )i j dg m i j t       (12) 

Although the Mahalanobis distance works well in some 
cases, it has limitations when there is camera motion. To solve 
this problem, a new metric for the assignment problem is 
presented. This second measure computes the smallest cosine 
distance in appearance space between the i-th track and the j-th 
detection. This alternative measure considers the appearance 
features as well as their orientation in the feature space, 
providing a different perspective than the Mahalanobis 
distance. 

 (2) ( ) ( ) 2( , ) min 1 T i i
d j k km i j r r r     (13) 

Again, a binary variable is introduced to indicate the 
acceptability of a relationship based on the provided metric. 
This binary variable acts as an indicator that evaluates to 1 or 0 
depending on whether the association between items meets the 
criteria of the metric. This method promotes a clear and binary 
decision-making process, which improves the efficiency and 
effectiveness of the data association stage in the overall 
tracking algorithm. 

(1) (2) (2)
, 1 ( , )i j dg m i j t       (14) 

The appropriate threshold for this binary indicator is 
obtained by measuring it on a separate training dataset. Both 
measurements are merged using a weighted total to create the 
association problem. This combination allows for a thorough 
examination by considering both the distance measured by 
Mahalanobis and the cosine distance in appearance space. The 
weighted sum provides a flexible framework for balancing the 
contributions of each indicator in the tracking algorithm, 
providing a resilient and adaptive approach to data association. 

(1) (2)
, ( , ) (1 ) ( , )i j d dh m i j m i j      (15) 

where an association is acceptable if it falls between the 
boundary ranges of both metrics, such as: 
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     (16) 

The influence of each metric on the total association cost 
can be controlled by hyperparameter  . The Hungarian 

algorithm and an optimized Kalman filter are used by the 
adaptive DeepSORT method to provide effective data 
association. The mapping problem is handled by the Hungarian 
algorithm, which considers cosine and Mahalanobis distances. 
Data association is supported by a binary indicator whose 
thresholds are determined using a training dataset. The 
utilization of a weighted sum to combine measurements 
ensures a stable and adaptable method. 

1) Optimizing the Noise Covariance of the Kalman Filter 
using the Waterwheel Plant Optimization Algorithm 

This section examines how the WPO algorithm can be used 
to improve the performance of the Kalman filter by optimizing 
the noise covariance, thereby improving the accuracy and 
efficiency of the tracking and state estimation processes: 

a) Initialization 

 Using a population-based optimization technique, the 
WPO uses a number of individuals to search through a given 
search space and identify the best possible solutions. Each 
waterwheel in the WPO population represents a distinct 
individual with a different value for each of the problem 
variables. Within the search space, specific locations of the 
waterwheels define these values. In order to get better results 
after several attempts, the algorithm iteratively searches this 
space by moving the waterwheels around. Initially, the 
solutions are populated as follows: 

 1 2, , ,M p M
Z z z z ⋯⋯⋯    (17) 

where pz depicts the M-th waterwheel (a solution of the 

candidate) and it can be expressed as: 

[ ]p cz Q      (18) 

where cQ  represents the noise covariances of the Kalman filter. 

b) Fitness Estimation 

The fitness of each solution is determined after solution 
initialization. The fitness function is considered to have the 
highest accuracy and is expressed as follows: 

 
n

Max AccuracyFit     (19) 

TN TP
Accuracy

TP FP TN FN




  
  (20) 

c) Solution Update 

The WPO algorithm combines exploration and exploitation 
phases to iteratively update the solution. To improve the overall 
solution, the waterwheels, which represent potential solutions, 
move throughout the search field. The algorithm can converge 
towards better solutions by simulating the hunting behavior of 
the waterwheel in the exploration phase and the process of 
capturing and transferring insects in the exploitation phase. The 

process of iterative updating continues until the algorithm 
reaches its final iteration. Phase 1 consists of exploring the 
positions and hunting the insects. Waterwheels have an 
excellent sense of smell, which they use to locate insects with 
remarkable predatory ability. The waterwheel detects the exact 
location of the insect and launches an attack as soon as it comes 
in contact with it. By mimicking this hunting behavior, the 
WPO enhances its ability to discover the optimal region and 
avoid local optima. Significant location changes within the 
search space are the outcome of this modeling. The new 
location of the waterwheel is found using an equation and a 
simulation of the waterwheel's approach to the problem. If 
moving to this new location increases the objective function's 
value, the previous location disappears in favor of the new one. 

 1 ( ) 2W r p t K
 

 
�

    (21) 

1 2( ) (2 )tp p t W K r


   
� � �

   (22) 

The following equation can be used to adjust the location of 
the waterwheel if the solution remains constant after three 
iterations: 

1 1

( ) 2
( , )t p

p t K
p Gaussian r

W

  


 

�

� �

  (23) 

The random variables in this situation are denoted by the 

variables 1r


 and 2r


, which have values between 0 and 2. K  is 

also an exponential variable, with values between 0 and 1. The 
diameter of the circle that the waterwheel plant will explore 

and investigate is denoted by the vector W


. Phase 2 is the 
exploitation phase and it simulates how the waterwheels collect 
insects and moves them to a feeding tube. By promoting 
convergence towards solutions that are close to those already 
found, this simulated behavior improves the WPO's 
exploitation capabilities during local search. Throughout the 
process, the waterwheel's placement within the search space is 
slightly altered. To imitate the natural behavior of waterwheels, 
WPO selects a new random position for each waterwheel in the 
population. This is called a "good position for consuming 
insects." If the objective function value is higher at this new 
location, the waterwheel is moved there and substitutes the old 
one, based on the following calculations: 

3 3( ( ) ( ))bestW r K p t r p t
 

  
� �

   (24) 

( 1) ( )p t p t K W


  
� �

    (25) 

In this case, the values of the random variable denoted by 

3r
�

range from 0 to 2. The solution at iteration t is denoted by 

( )p t
�

 and the optimal solution found up to that time is denoted 

by ( )bestp t


. As in the previous exploration phase, the next 

mutation is employed to guarantee the avoidance of local 
minima if the solution does not improve for three consecutive 
iterations. 
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1( 1) ( )sin
FC

p t r K


     
 

� �

   (26) 

where the independent random variables F  and C  have values 
in the range (-5, 5). In addition, the exponential decay of K  
can be shown using the following equation: 

2

3
max

2
1

t
K F

T

 
   
 

    (27) 

The WPO is a repeatable process. After the first two phases 
of WPO are completed, all waterwheel positions must be 
adjusted. 

d) Termination 

The best candidate is improved after comparing the 
objective function values. Until the algorithm reaches its last 
iteration, the waterwheel positions are modified in each 
iteration. The best solution found and maintained by WPO is 
provided to us after enough iterations. 

III. RESULTS AND DISCUSSION 

The proposed robust object tracking system was 
implemented and tested on the UCSD dataset [18], which 
contains video of pedestrians on UCSD walkways captured by 
a stationary camera, and it performed better than expected in 
overcoming the difficulties associated with video surveillance. 
The system's potential to set a new benchmark in object 
tracking for video surveillance systems was demonstrated by its 
thorough evaluation, which included accuracy, specificity, 
precision, recall, and F1-score. 

A. Experimental Results 

We have achieved promising results in the experimental 
evaluation of our robust object tracking system with the UCSD 
dataset. The suggested approach demonstrated significant gains 
in object tracking accuracy over conventional techniques by 
utilizing deep learning and the adaptive DeepSORT algorithm. 
Table I presents a detailed visual representation of the tracking 
results of the proposed object tracking system. This table is 
useful for evaluating the system's performance over various 
frames of the input video sequence. A systematic and easy to 
follow comparison is provided by sequentially grouping the 
input image frames with their corresponding tracked output 
images. Table I provides a detailed assessment of how well the 
tracking system maintains accuracy and consistency throughout 
the video sequence by showing the frames in sequence. 
Observers can easily follow the path of objects, identify 
successful tracking occurrences, and notice any differences or 
improvements in the tracked output compared to the original 
input frames. 

B. Comparative Analysis 

Simple Online Real-time Tracking (SORT), Global 
Optimization on Graph with Early Oscillation Check 
(GOG_EOC), Siamese Convolutional Trackers (SCTrack), and 
the proposed DeepSORT are among the trackers evaluated in 
this section. The evaluation is based on various performance 
metrics such as Multiple Object Tracking Accuracy (MOTA), 

Multiple Object Tracking Precision (MOTP), Integrated 
Detection and False-alarm Rate (IDF1), Mostly Tracked (MT), 
Mostly Lost (ML), False Positives (FP), False Negatives (FN), 
ID Switches (IDs), and Fragmentations (FM). 

TABLE I.  TRACKED OUTPUT FRAMES FOR 
CORRESPONDING INPUT FRAMES 

Frame 

number 
Input image Tracked output image 

1 

  

2 

  

3 

  

4 

  
 

Table II provides a thorough review of various object 
tracking techniques in the context of multiple object tracking. 
The proposed DeepSORT algorithm outperforms others in 
terms of MOTA, with the best score of 66,5% demonstrating 
higher accuracy in tracking multiple objects. The MOTP for 
the proposed DeepSORT is also noteworthy, with a MOTP 
score of 0.259, demonstrating precision in object tracking. The 
IDF1 score is 69, highlighting its efficiency. The metrics MT, 
ML, FP, FN, IDs, and FM demonstrate the robustness of the 
proposed DeepSORT. It excels in minimizing FP and FN with 
4722 and 68060, respectively, and outperforms in the metrics 
MT, ML, IDs, and FM, demonstrating its ability to maintain 
accurate object trajectories. The comparison demonstrates the 
effectiveness of the proposed DeepSORT algorithm in 
overcoming problems associated with accurate and robust 
multiple object tracking, making it a promising solution for a 
wide range of tracking conditions. It highlights the proposed 
DeepSORT as a leading algorithm for advanced object tracking 
in video surveillance, combining high accuracy with precision 
and robustness across a wide range of tracking conditions. 
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TABLE II.  EVALUATING THE PERFORMANCE OF VARIOUS TRACKERS USING DIFFERENT PERFORMANCE METRICS 

Tracker MOTA MOTP IDF1 MT ML FP FN IDs FM 

SORT 40.2 0.251 56.1 29.7 51.4 11838 74027 799 1380 
GOG_EOC 36.9 0.242 46.5 20.5 58.9 5445 86399 877 1090 

SCTrack 35.8 0.244 45.1 21.1 55.0 7298 85623 798 2042 
Proposed DeepSORT 66.5 0.259 69 32.3 39.5 4722 68060 779 3717 

 

IV. CONCLUSION 

To address the difficulties posed by complex circumstances 
and enormous volumes of data, this work presents an advanced 
object tracking system for video surveillance systems. Our 
method demonstrates improved tracking capabilities by 
combining the adaptive Deep Simple Online Real-time 
Tracking (DeepSORT) algorithm with an optimized Kalman 
filter. The tracking accuracy is further improved by 
incorporating the Waterwheel Plant Optimization (WPO) 
approach. The effectiveness of the proposed deep learning-
based method in improving object tracking in dynamic 
scenarios and overcoming the limitations of conventional 
tracking methods is demonstrated through evaluation using a 
wide range of performance metrics, such as Multiple Object 
Tracking Accuracy (MOTA), Multiple Object Tracking 
Precision (MOTP), Integrated Detection and False-alarm Rate 
(IDF1), Mostly Tracked (MT), and Mostly Lost (ML). Future 
research should focus on developing methods to improve the 
robustness of the system in dynamically changing situations, 
such as handling unexpected changes in illumination or 
adapting to unpredictable object movements. 
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