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ABSTRACT 

Real-time electrical load prediction and management are critical to ensuring the stability and reliability of 

modern power systems, especially as global energy demand continues to grow. This research presents a 

groundbreaking solution by combining a hybrid deep learning approach with reinforcement learning to 

address the challenges of accurate forecasting and adaptive energy distribution. The proposed framework 

integrates Convolutional Neural Networks (CNNs) and Long Short-Term Memory (LSTM) networks, 

leveraging their strengths to capture both spatial and temporal patterns in electrical load data. This hybrid 

model delivers highly accurate load forecasts and effectively handles complex and nonlinear consumption 

patterns that traditional methods fail to address. In addition to accurate forecasting, the research employs 

the Soft Actor-Critic (SAC) reinforcement learning algorithm, which enables adaptive decision-making for 

real-time load management. By dynamically adapting to fluctuating grid conditions, the SAC algorithm 

optimizes energy distribution, reduces peak demand stress, and enhances overall system efficiency. This 

integrated approach ensures that energy resources are allocated more effectively, improving grid stability 

and minimizing waste. The methodology is validated through rigorous experimentation using real-world 

datasets, such as the PJM dataset, and performance metrics, including Mean Absolute Error (MAE), Root 

Mean Square Error (RMSE), and overall system efficiency. This research not only advances predictive 

analytics in electrical load management, but also provides utilities and consumers with a scalable and 
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practical solution to optimize energy consumption, integrate renewable energy sources, and promote 

sustainability. The proposed hybrid deep learning and reinforcement learning framework serves as a vital 

tool for future energy systems, paving the way for smarter, more resilient power grids. 

Keywords-LSTM; CNNs; MAE; RMSE, Soft Actor-Critic (SAC) 

I. INTRODUCTION 

Electrical load forecasting is a critical foundation of modern 
power systems, ensuring reliable energy generation, efficient 
distribution, and optimized consumption. It plays an 
indispensable role in preventing grid overloads, reducing 
operating costs, and promoting sustainability, especially as 
power grids face increasing complexity due to the integration 
of renewable energy, the rise of electric vehicles, and the 
adoption of smart grid technologies. Over the years, various 
forecasting methods have emerged, each with unique strengths. 
Traditional methods, such as ARIMA and Holt-Winters, excel 
at modeling linear relationships and seasonal trends, making 
them suitable for short-term forecasting in stable systems. 
However, their inability to account for nonlinear patterns and 
dynamic behaviors limits their effectiveness in modern energy 
systems characterized by variability and complexity [1]. 
Clustering algorithms such as K-Means, Time Series K-Means, 
and OPTICS are adept at identifying patterns, detecting 
anomalies, and grouping similar behaviors in temporal data. 
These methods are effective for exploring temporal trends and 
gaining insight into specific behaviors within datasets [2]. 
Machine learning techniques, including Support Vector 
Machines (SVM), Artificial Neural Networks (ANN), and 
XGBoost, have shown remarkable potential in capturing 
nonlinear dependencies and incorporating external variables, 
such as weather conditions and economic factors, into 
forecasting models. These methods have significantly 
improved the accuracy and reliability of energy demand 
forecasting [3-6]. Hybrid models, which integrate approaches 
like SVR with LSTMs or PC-Regression, aim to combine the 
strengths of various techniques to enhance forecasting accuracy 
and adaptability. For example, hybrid models can combine the 
temporal modeling capabilities of LSTMs with the regression 
precision of traditional approaches, providing a balanced and 
powerful solution [7-9]. Deep learning techniques, such as 
CNN-BiLSTM, CNN-GRU, and CNN-RNN, have transformed 
the landscape of load forecasting. These models excel at 
capturing both spatial and temporal dependencies, offering 
highly accurate predictions for complex and dynamic energy 
systems. When combined with optimization techniques such as 
Bayesian tuning, deep learning models deliver unparalleled 
forecasting performance, making them highly suitable for 
modern energy systems [10-12]. Reinforcement learning (RL) 
algorithms have opened new avenues for real-time energy 
management. These algorithms dynamically optimize energy 
allocation, mitigate peak load stress, and enhance grid 
efficiency in rapidly changing environments. Their ability to 
adapt to evolving conditions and optimize decision-making 
processes ensures improved operational reliability and energy 
distribution [13-16]. 

This research proposes a hybrid framework that combines 
the strengths of deep learning and reinforcement learning to 
address the challenges of modern electrical load forecasting 

and management. Convolutional Neural Networks (CNNs) are 
employed to capture spatial patterns in load data, whereas Long 
Short-Term Memory (LSTM) networks model temporal 
dependencies, ensuring precise predictions even for nonlinear 
and dynamic loads. The framework incorporates the Soft 
Actor-Critic (SAC) algorithm to enable adaptive, real-time 
energy distribution decisions that optimize resource allocation, 
reduce peak load stress, and enhance grid reliability. Validation 
against real-world datasets, such as the PJM dataset, along with 
evaluation metrics such as Mean Absolute Error (MAE), Mean 
Squared Error (MSE), and Root Mean Square Error (RMSE), 
highlights its superior predictive accuracy and operational 
efficiency. By addressing the shortcomings of traditional 
approaches including ARIMA, regression models, and 
clustering algorithms, it bridges the gap between predictive 
analytics and real-time operational management. It also 
supports the integration of renewable energy sources, 
promoting sustainability and aligning with global 
decarbonization goals. By combining forecasting accuracy and 
adaptive energy management, the proposed framework 
provides a scalable, robust solution for building smarter and 
more resilient power grids, paving the way for sustainable and 
efficient energy systems. 

II. METHODOLOGY 

This research adopts a hybrid model combining CNN and 
LSTM networks for electrical load forecasting, supplemented 
by the SAC algorithm for real-time load management. The 
primary objective is to achieve accurate electrical load 
prediction and optimize its management using reinforcement 
learning. The PJM dataset is used to train, test, and evaluate 
both the CNN-LSTM and SAC models. 

A. Model Architecture 

1) Hybrid CNN-LSTM Model for Load Forecasting 

The hybrid CNN-LSTM model integrates convolutional 
and recurrent layers to effectively predict electrical loads by 
capturing both spatial and temporal patterns in the data. The 
CNN components are: 

 Convolutional layers: Two layers of 64 and 128 filters, 
respectively, each using a 3×3 kernel size and ReLU 
activation to extract spatial dependencies and enhance 
feature representation. 

 Pooling layers: Two max-pooling layers with a 2×2 pool 
size to reduce dimensionality and computational 
complexity. 

 Flatten layer: Prepares the extracted features for sequential 
processing by the LSTM component. 

The LSTM components are: 
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 LSTM layers: Two layers of 128 and 64 units, respectively, 
designed to capture temporal dependencies in electrical 
load variations. 

 Activation functions: Tanh and sigmoid functions are 
employed within the gating mechanisms for efficient 
temporal feature processing. 

 Dropout layers: Dropout rates of 0.3 and 0.5 are applied 
after each LSTM layer to prevent overfitting. 

 Fully connected layer: A dense layer of 128 neurons with 
ReLU activation integrates the spatial and temporal features 
before producing the output. 

 Output Layer: A single neuron with a sigmoid activation 
function predicts the load category for binary classification 
tasks. 

2) SAC Algorithm for Load Management 

To complement the forecasting model, the SAC 
reinforcement learning algorithm optimizes load management 
strategies in real-time: 

 Reinforcement learning approach: SAC interacts with a 
simulated grid environment to dynamically balance load 
forecasts with grid requirements, ensuring efficient energy 
distribution. 

 Action selection: The algorithm alternates between 
exploration (discovering new load management strategies) 
and exploitation (leveraging successful actions) to 
maximize cumulative rewards. This adaptive process 
ensures robust load management under dynamic conditions. 

B. Proposed Methodology  

Figure 1 illustrates the proposed model for predicting and 
managing electrical load using a combination of deep learning 
and reinforcement learning techniques. The proposed 
methodology is as follows: 

 CNN layers (spatial patterns): The process starts with 
convolutional layers that extract spatial features from input 
data, such as grid-based electrical load patterns. Then, the 
pooling layer reduces the size of the data while preserving 
essential features. The flattening layer converts the multi-
dimensional output to a one-dimensional vector for further 
processing. 

 LSTM layers (temporal dependencies): The flattened data 
are passed to the LSTM layers, which capture temporal 
dependencies, such as sequential trends in electrical load 
over time. These layers help predict future load patterns by 
learning from past data. First, the dropout layers reduce 
overfitting during training. Then, the fully connected layer 
integrates spatial and temporal features to generate a final 
representation. Lastly, the output layer provides predictions 
for future electrical load. 

 SAC for load management: The predictions are used by the 
SAC reinforcement learning algorithm to develop strategies 
for effective electrical load management. The grid 
environment module models real-world energy distribution 

scenarios, allowing the SAC algorithm to optimize energy 
allocation and minimize overloading. The action selection 
module determines optimal strategies for real-time load 
management. 

 

 
Fig. 1.  Model for electrical load prediction and management. 

The choice of these algorithms is based on their unique 
capabilities to address the specific challenges posed by the task 
at hand. CNN, LSTM, and SAC were chosen for their 
strengths, which are better suited to the nature of the data and 
the problem to be solved: 

 CNN: Specialized in extracting spatial features from input 
data, unlike other deep learning algorithms that may not 
focus on spatial correlations, making it ideal for analyzing 
grid-based electrical patterns: 

 LSTM: Specifically designed to handle sequential and 
temporal data, unlike standard neural networks that cannot 
effectively capture time-based dependencies, making it 
optimal for time series forecasting. 

 SAC: Unlike traditional reinforcement learning algorithms, 
SAC excels in continuous action spaces and balancing 
exploration and exploitation, making it highly effective for 
real-time dynamic load management. 

C. Edge Computing in the Proposed Framework 

The proposed framework integrates edge computing to 
improve the performance and practicality of deploying the 
hybrid CNN-LSTM and SAC models for electrical load 
forecasting and real-time management. By processing data 
closer to the source, such as smart meters, edge computing 
reduces latency, ensures timely responses, and minimizes 
dependence on cloud infrastructure. Edge devices perform pre-
processing tasks and run lightweight versions of the CNN-
LSTM model for localized predictions, while the SAC 
algorithm optimizes load management in real time. This 
integration improves response time, increases adaptability in 
real-world environments, and reduces network congestion, 
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making the framework more efficient and scalable for dynamic 
scenarios [17]. 

D. Dataset and Preprocessing 

The PJM dataset, obtained from the official PJM 
Interconnection website, provides comprehensive historical 
electrical load data. It includes environmental variables such as 
temperature, humidity, and wind speed, making it highly 
suitable for this research. Critical features such as grid 
frequency, power demand, and weather-related factors are 
included, providing valuable inputs for load forecasting and 
management models [18]. The properties of the dataset are: 

 Number of samples: The dataset contains thousands of 
observations on electrical loads and associated weather 
conditions. 

 Number of features: Key features include time of day, 
weather variables (e.g., temperature, humidity, wind speed), 
and power demand. These features contribute significantly 
to the prediction of electrical load patterns. 

 Time span: The dataset spans a considerable period, 
allowing models to effectively capture both seasonal and 
temporal patterns. 

The PJM dataset was selected for this research because of 
its real-world applicability and inclusion of environmental 
variables, which are perfectly aligned with the study's 
objectives. Its key characteristics that make it suitable for this 
study are: 

 Comprehensive real-world data: The dataset accurately 
reflects real-world electrical load patterns and grid 
behavior. It captures load variations caused by actual 
demand, grid operations, and environmental factors. 

 Inclusion of environmental variables: By incorporating 
weather-related features such as temperature, humidity, and 
wind speed, the dataset enhances the model's ability to 
accurately predict electrical loads. This is critical for real-
time decision making in dynamic grid environments. 

 Real-world scenario representation: The data reflect the 
complexity of grid operations by integrating temporal 
patterns of electricity demand with the impact of external 
factors such as weather conditions and seasonal variations. 
These features make the dataset a valuable tool for 
developing predictive models that can be applied to real-
world conditions. 

The preprocessing steps performed on the dataset are as 
follows:  

 Cleaning: Missing values and anomalies are addressed to 
ensure the integrity of the dataset. 

 Normalization: All numerical features are normalized to 
ensure uniform scaling, which is essential for efficient 
model training. 

 Handling missing values: Missing data are handled using 
interpolation techniques to maintain the completeness of the 
dataset. 

 Feature selection: Key features, such as past load values, 
time of day, and weather conditions, are selected to enhance 
prediction accuracy. 

The dataset was segmented as follows: 

 Training set (70%): Used to train both the CNN-LSTM and 
SAC models. 

 Testing set (15%): Used for model evaluation to assess 
generalization on unseen data. 

 Evaluation set (15%): Used for final performance 
evaluation to ensure model applicability in real-world 
environments. 

E. Model Training and Evaluation Process 

The CNN-LSTM model is trained on sequences of 
historical load data. The training process aims to minimize 
prediction errors such as MAE and MSE using 
backpropagation and gradient descent optimization methods to 
optimize the model for predicting electrical load patterns over 
different time horizons (e.g., hourly, daily). The model is 
trained for a predefined number of epochs (e.g., 50-100), with 
the learning rate adjusted through experimentation to ensure 
convergence. In addition, K-fold cross-validation is employed 
to evaluate the model's ability to generalize and prevent 
overfitting. 

The SAC model is trained in a simulated environment 
where it interacts with the load data and learns to handle load 
variations by selecting actions. Actions are evaluated through a 
reward system that encourages effective load balancing. The 
SAC model is trained over a fixed number of episodes, each 
consisting of multiple training steps to iteratively improve the 
load management policy.  

F. Performance Evaluation Metrics 

The performance of the CNN-LSTM and SAC models was 
evaluated using a set of metrics that are essential to both the 
forecasting and load management tasks. Specifically, the 
metrics used to evaluate the CNN-LSTM model are: 

 MAE: This metric measures the average magnitude of the 
absolute errors between the predicted and actual loads. A 
lower MAE indicates better prediction accuracy. 

MAE = �
�∑ |y
 − y�|�


��     (1) 

where ��  are the actual values from the dataset, ��  are the 
predicted values from the model and � is the number of 
data points. 

 MSE: This metric measures the average squared difference 
between predicted and actual loads. It penalizes larger 
errors and provides a clearer understanding of model 
performance, especially for significant deviations. 

MSE = �
�∑ �y
 − y����


��    (2) 

 RMSE: This metric is the square root of the MSE and 
provides an interpretable error metric in the same units as 
the electrical load (kW). A lower RMSE indicates better 
model accuracy. 
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RMSE = √MSE    (3) 

 R² (R-Squared): This metric indicates the proportion of the 
variance in the data that is explained by the model. A higher 
R² value indicates that the model explains a larger portion 
of the variance, demonstrating high predictive power. 

R� = 1 − ∑ ������ ���
� !
∑ �����"���
� !

    (4) 

 MAPE (Mean Absolute Percentage Error): MAPE 
expresses the prediction error as a percentage of the actual 
value. Lower MAPE values indicate higher prediction 
accuracy and more reliable load forecasting. 

MAPE = �$$
� ∑ %������ %

�

��    (5) 

The metrics used to evaluate the SAC model are: 

 Cumulative reward: This metric measures the total reward 
accumulated over multiple steps during the load 
management process. A higher cumulative reward reflects 
better overall load balancing and decision making. 

R&'(')*+
,- = ∑ r+/
+��     (6) 

 Average reward per step: This metric calculates the average 
reward gained per action or decision taken by the SAC 
model. A higher value indicates that the model is making 
more effective decisions at each step of load management. 

R*,-0*1- = �
/∑ r+/

+��     (7) 

Together, these metrics provide a comprehensive evaluation 
of the forecasting performance of the CNN-LSTM model and 
the efficiency of the SAC model in real-time electrical load 
management. Lower errors in the CNN-LSTM model and 
higher rewards in the SAC model are indicators of better model 
performance. 

III. RESULTS AND DISCUSSION 

The CNN-LSTM model was evaluated for its ability to 
predict electrical loads, and its performance was assessed using 
several evaluation metrics. The evaluation results are presented 
in Table I and illustrated in Figure 2. In particular, the results 
can be explained as follows: 

 MAE: The MAE value of 0.015 kW indicates a relatively 
low average prediction error between the actual and 
predicted electrical loads. This reflects the model's 
effectiveness in capturing load variations. 

 MSE: The MSE value of 0.0004 kW² indicates that while 
the model is generally accurate, larger deviations from the 
predicted values are still penalized. 

 RMSE: With an RMSE value of 0.02 kW, the model 
provides a clear interpretation of the prediction error, with 
the average deviation being around 0.02 kW, which is 
consistent with the MAE value. 

 R²: The model achieves an impressive R² value of 0.95, 
demonstrating that the model explains approximately 95% 
of the variance in the MAPE metric. 

  MAPE: A MAPE of 1.5 highlights the percentage accuracy 
of the model, with a low percentage indicating high 
predictive power. This indicates a good fit and reliable 
predictions. 

The high R² and low MAPE of the CNN-LSTM model 
suggest that it is well suited for predicting electrical loads, even 
under complex and dynamic conditions. The performance 
metrics indicate that the model can be trusted for real-time 
predictions in electrical load forecasting. 

TABLE I.  EVALUATION METRICS FOR THE CNN-LSTM 
MODEL 

Metric Value 

MAE 0.015 kW 
MSE 0.0004 kW² 

RMSE 0.02 kW 
R² 0.95 

MAPE 1.5 

 

 
Fig. 2.  Evaluation metrics for the CNN-LSTM model. 

The performance of the SAC reinforcement learning model 
was assessed based on the the average reward per step and the 
cumulative reward during the testing phase. The average 
reward per step reflects the model's efficiency in gradually 
improving its performance, whereas the cumulative reward 
represents the overall performance of the model during the 
training process. The evaluation results are presented in Table 
II and illustrated in Figure 3. In particular, the results can be 
explained as follows: 

 Cumulative reward: The cumulative reward of 380 reflects 
the total sum of rewards accumulated over 100 simulation 
steps. Higher cumulative rewards indicate that the SAC 
agent has successfully learned effective strategies for 
balancing electrical loads and minimizing variations. 

 Average reward/step: An average reward of 3.8 per step 
indicates that, on average, the agent's load management 
actions are efficient and effective in reducing load 
deviations. This value suggests that the SAC model can 
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make meaningful adjustments to the system in real time, 
demonstrating its ability to adapt to changing conditions. 

TABLE II.  EVALUATION METRICS FOR THE SAC 
REINFORCEMENT LEARNING MODEL 

Metric Value 

Cumulative reward 380 

Average reward/step 3.8 

 

 
Fig. 3.  Evaluation metrics for the SAC reinforcement learning model. 

The SAC model's high cumulative reward indicates its 
ability to adapt to the environment and make load management 
decisions that improve the overall system performance. The 
average reward per step highlights the model's efficiency in 
executing actions, making it a strong candidate for real-time 
load management applications in electrical grids. The results 
indicate that both models perform well in their respective tasks 
in the context of real-time electrical load prediction and 
management. The CNN-LSTM model excels in accurately 
predicting electrical loads with low error rates, especially in 
capturing the underlying patterns in time-series data. The high 
R² and low MAE values demonstrate its ability to predict loads 
with minimal error, making it suitable for predictive 
maintenance and load forecasting applications. The SAC 
model, on the other hand, performs exceptionally well in real-
time electrical load management. The cumulative reward value 
reflects its success in adapting to dynamic load conditions, 
whereas the average reward per step demonstrates its efficiency 
in executing load balancing actions. SAC's reinforcement 
learning framework enables continuous improvement of load 
management strategies to optimize real-time performance. 
While the CNN-LSTM model provides accurate predictions of 
future electrical loads, the SAC model is better suited for real-
time adaptive decision making in a dynamic environment. By 
combining these two models, a hybrid system is developed that 
predicts electrical loads, using the CNN-LSTM, and then uses 
reinforcement learning via SAC to dynamically adjust load 
distribution in response to predicted changes. 

The combination of deep learning for load prediction and 
reinforcement learning for adaptive load management offers a 
promising solution for efficient and reliable real-time power 
distribution. Furthermore, the integration of these techniques 
can lead to smarter, more responsive energy management 
systems, capable of optimizing energy usage and reducing 
waste. This approach could be particularly beneficial in grid 

systems with fluctuating demand, such as smart grids or grids 
powered by renewable energy, where load variability is high. 

IV. CONCLUSION 

This research presents a novel framework for real-time 
electrical load prediction and management by integrating deep 
learning and reinforcement learning techniques. Specifically, 
we combined Convolutional Neural Networks (CNN) and 
Long Short-Term Memory (LSTM) networks to predict 
electrical load patterns, while leveraging the Soft Actor-Critic 
(SAC) algorithm to optimize load management in real time. 
The main findings of this study highlight the effectiveness of 
the hybrid CNN-LSTM model, which achieved high 
forecasting accuracy with an R-squared value of 0.95 and a low 
Mean Absolute Error (MAE) of 0.015 kW. This performance 
demonstrates its superiority over traditional methods, which 
typically rely on statistical or linear models that fail to capture 
the complex and dynamic behavior of electrical loads. The 
novelty of this approach lies in the seamless integration of 
predictive deep learning models with adaptive reinforcement 
learning for real-time load optimization. Unlike previous 
works, which typically treat load prediction and load 
management as separate tasks, our framework unifies them into 
a single cohesive system, enabling more accurate forecasting 
and dynamic, adaptive decision making. In addition, the use of 
SAC for dynamic load management distinguishes this research 
from others that rely solely on static load forecasting or 
simplistic rule-based management strategies.The contribution 
of this research extends beyond improving the accuracy of load 
forecasting by providing a practical solution for real-time load 
optimization in smart grids. By incorporating SAC into the 
forecasting framework, this study addresses both the prediction 
and management of load variations, a gap that has been largely 
overlooked in the literature. Previous studies have 
predominantly focused on either forecasting or management, 
but rarely combined them into a single, integrated model with 
adaptive capabilities. Future studies will focus on enhancing 
the scalability of the proposed framework for larger and more 
complex grid systems, such as national grids, while addressing 
challenges related to computational efficiency and latency. The 
integration of renewable energy sources, such as solar and wind 
power, into the framework could further improve the system's 
adaptability and sustainability. Additionally, advancements in 
edge computing and distributed architectures can help mitigate 
latency issues and enable more efficient real-time processing. 
Real-world deployment of the proposed solution in operational 
smart grids will be an important next step to assess its 
practicality and performance in dynamic environments. 
Moreover, exploring hybrid reinforcement learning techniques, 
such as Deep Q-Networks (DQN) or Proximal Policy 
Optimization (PPO), could further refine the load management 
process and broaden its applicability across diverse energy 
systems. Exploring the use of transfer learning to adapt 
predictive models to new environments with minimal retraining 
could also accelerate deployment in diverse grid setups. 
Finally, the adoption of Internet of Things (IoT) technologies 
and advancements in sensor networks could complement this 
framework by providing richer, real-time data streams for both 
prediction and management. These trends suggest that the 
proposed framework has the potential to evolve into a 
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foundational technology for intelligent, adaptive, and 
sustainable energy systems in the future. 
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