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ABSTRACT 

Image comparison is an important task that is part of the pipeline in many different computer vision 

applications. Maintaining style coherence across presentation slides is essential for professionalism and 

effective communication. Inconsistent design elements, such as varying fonts, colors, borders, and logo 

placements, can disrupt the visual flow and diminish the overall impact. This study introduces a novel 

approach to automate the validation of presentation slide coherence using a Dual-Branch Convolutional 

Neural Network. The model is trained to calculate a similarity score between image slides based on key 

design parameters, including font consistency, color schemes, border styles, and layout alignment. The 

proposed CNN architecture is specifically designed to compare two inputs representing slide images for 

binary classification. Unlike traditional Siamese networks that rely on identical branches and a distance 

metric for feature comparison, the proposed dual-branch architecture concatenates feature embeddings 

from two specialized branches and processes them through fully connected layers for final classification, 

allowing more targeted and nuanced feature extraction and coherence evaluation. The model was 

evaluated on a custom image dataset comprising 6000 images synthesized following specific design 

guidelines for style coherence of image features to ensure consistency and variety in the dataset while 

maintaining a balance for comparative tasks. The experimental results demonstrate significant 

improvements over the baseline Siamese network across all key metrics. Specifically, the proposed model 

achieved an accuracy of 0.85 compared to 0.81 for the baseline Siamese network, Jaccard similarity 0.76 vs 

0.72, Kappa coefficient 0.69 vs 0.62, and ROC AUC 0.87 vs 0.81. Additionally, precision increased from 

0.73 to 0.77 and the F1-score reached 0.87, reflecting a stronger balance between precision and recall. This 

work provides a significant contribution to automated design evaluation, offering a flexible and modular 

architecture that supports multi-view analysis and captures intricate visual patterns and discrepancies. By 

addressing key limitations of traditional approaches, the proposed model provides a robust tool to ensure 

style coherence in professional presentations, paving the way for more efficient and accurate design 

validation processes. 

Keywords-image similarity; presentation advisor; image processing; presentation coherence; neural networks 

I. INTRODUCTION  

In today's digital world, keeping a consistent design is 
essential for ensuring professionalism and clarity, especially in 
business presentations, websites, and marketing materials. 
When design elements such as fonts, colors, borders, or logos 
do not match across slides, the result can be confusing and 
unprofessional, potentially impacting the audience's 
understanding and engagement. This is especially relevant in 
business settings, where clarity in communication is crucial.  

Image coherence is fundamental in a presentation advisor 
tool as it ensures visual consistency and alignment across all 
slides in a presentation. A cohesive design enhances the overall 
professional appearance, allowing audiences to focus on 
content without being distracted by style variations. 
Consistency in fonts, colors, and layouts reinforces the message 
and creates a smooth flow, which is essential for an effective 
presentation. For a teaching tool, demonstrating these 
principles is crucial to help users create informative and 
visually appealing presentations, ultimately improving the 
communication of ideas. 
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Manual consistency checks for each slide can be time-
consuming and labor-intensive. However, recent advances in 
Artificial Intelligence (AI) can automate this process. AI can 
analyze slides to catch subtle design discrepancies and 
calculate a similarity score based on elements such as fonts, 
colors, and layout. By generating a score from 0 to 1, where a 
higher value reflects stronger design coherence, AI helps 
ensure that presentations remain visually aligned with branding 
and other guidelines. Previous research has underscored the 
need for such tools, as design inconsistencies in presentations 
often reduce effectiveness and professionalism across sectors 
from academia to business [1].  

Style coherence can be interpreted differently by designers. 
Elements such as gradients, transparency, and textures are 
subjective, meaning that what appears consistent to one 
designer may not be the same for another. Achieving a 
cohesive style requires managing multiple parameters, 
including colors, fonts, borders, logos, spacing, and alignment, 
all of which must be evaluated consistently. Therefore, the 
following elements should be taken into account: 

 Color analysis: Techniques like histograms or metrics, such 
as color distance in RGB/HSV space, are typically used to 
detect similarities in color schemes [2, 3]. 

 Font analysis: Consistency in font types, sizes, and styles is 
usually checked using Optical Character Recognition 
(OCR) [4]. 

 Border and shape consistency: A key aspect of style is 
maintaining consistent border thickness, patterns, or shapes 
across designs to ensure visual coherence [5]. 

 Logo detection and placement: For a cohesive style, logos 
must be consistently sized and positioned, helping to 
maintain brand uniformity [6]. 

 Layout and alignment: Consistency requires analyzing the 
arrangement and alignment of elements, ensuring the 
overall layout is balanced and visually harmonious [7, 8]. 

The paper introduces a novel approach that utilizes a dual-
branch CNN specifically designed for image coherence 
assessment by innovatively targeting the key elements of visual 
design, namely color schemes, fonts, borders, and layouts, to 
quickly detect and flag inconsistencies, distinguishing from 
standard time-intensive manual checks. In contrast to the 
traditional usage of Siamese CNNs with two identical branches 
that utilize a distance metric to compare embeddings and 
determine similarity between the inputs, the proposed dual-
branch CNN concatenates the feature embeddings from each 
branch and passes them through fully connected layers for final 
classification, allowing for more specialized feature extraction. 
Thus, the proposed CNN architecture enables parallel feature 
extraction while preserving effective feature integration that 
allows it to identify even subtle differences that contribute to 
the overall style coherence. The modularity and flexibility of 
the architecture further support multi-view analysis. In 
addition, the incorporation of dedicated layers for 
regularization within the proposed architecture mitigates 
overfitting, enhances model generalizability, and fosters robust 
learning, even when working with limited datasets.  

II. RELATED WORKS  

The feature detection and similarity metrics used in image 
comparison for evaluation of image similarity include Oriented 
Fast and Rotated BRIEF (ORB), Earth Mover's Distance 
(EMD), Structural Similarity Index (SSIM), and Pixel 
Similarity. ORB is a fast and efficient algorithm for detecting 
and describing image key points [9]. It uses a corner detection 
based on Features from Accelerated Segment Test (FAST) to 
find important points in the images and BRIEF as a feature 
descriptor to represent the area around each key point with a 
compact binary string. EMD measures the similarity between 
two images by calculating the minimum "work" required to 
transform one image's distribution into another, often 
comparing color histograms [10]. It is effective in handling 
distribution shifts, making it robust for comparing images 
based on color or texture. However, EMD is computationally 
expensive, particularly for large images. It is commonly used in 
color-based image retrieval and texture comparison tasks. The 
SSIM compares two images based on structural features, 
luminance, and contrast, reflecting how humans perceive image 
quality [11]. Rather than focusing on pixel-level differences, it 
provides a more balanced comparison. However, SSIM is less 
effective when images experience geometric transformations, 
such as rotation or scaling. It is widely used in tasks such as 
image quality assessment, video compression analysis, and 
image restoration. Pixel similarity compares two images by 
directly matching corresponding pixel values, using methods 
such as Mean Squared Error (MSE) or normalized cross-
correlation [12]. It is simple and fast, making it easy to 
compute. However, it is sensitive to noise and slight shifts and 
does not capture image structure or patterns. This method is 
best suited for exact image-matching tasks, such as in medical 
imaging or surveillance, where minimal differences are 
expected. 

With recent advances in deep learning architectures, deep-
ranking approaches are also widely used for image similarity 
evaluation. In [13], deep ranking was presented for fine-grained 
image similarity, utilizing a deep learning model based on a 
triplet-based CNN architecture. This model learns to rank the 
similarity of images by processing a triplet consisting of a 
query image, a positive image, and a negative image. This 
approach effectively captures subtle distinctions between 
similar images and employs a multiscale method to analyze 
features at various resolutions. However, it requires large 
amounts of labeled training data and significant computational 
resources for training. The model is particularly useful in 
applications like search-by-example, where identifying fine-
grained differences is essential, such as distinguishing between 
different species of animals or plant varieties. 

CLIP (Contrastive Language-Image Pretraining) is a 
multimodal similarity measure that evaluates images based on 
their semantic content utilizing both text and image encoders 
[14]. It transforms images and their corresponding textual 
descriptions into a shared vector space and measures similarity 
using cosine similarity. This approach provides a deeper 
semantic understanding, surpassing traditional pixel or 
structural comparisons by incorporating semantic relationships 
between images. However, CLIP's effectiveness depends on the 
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availability of high-quality textual descriptions. It is 
particularly well suited for tasks such as semantic image 
search, image classification, and recommendation systems that 
integrate visual and textual information. 

OASIS (Online Algorithm for Image Similarity) is an 
online learning algorithm specifically designed for scalable 
image similarity learning, employing a large-margin criterion 
and hinge loss [5]. It excels at handling large datasets, capable 
of learning from millions of images while utilizing sparse 
matrices for efficient computation and storage. However, 
OASIS may struggle with cases requiring dense representations 
or very fine-grained distinctions between images. Its primary 
applications include image retrieval and visual search tasks in 
large-scale scenarios. This makes OASIS particularly effective 
for environments where rapid and scalable image comparison 
is essential. In [15], an autoencoder based on a DNN was used 
to identify and improve image similarity tasks. This approach 
operates in an unsupervised learning setup, where the model 
autonomously learns image features. The autoencoder 
comprises an encoder that compresses input images to latent 
representations and a decoder that reconstructs images from 
them. The cosine similarity measure is employed on latent 
vectors to quantify the similarity between images. Principal 
Component Analysis (PCA) also reduces dimensionality, 
improving similarity computations. Dropout, batch 
normalization, and data augmentation are integrated to address 
overfitting, enhancing generalization. During training, 
hyperparameter tuning and network optimization increased 
performance. The results showed that this autoencoder 
framework surpassed traditional CNNs in similarity 
assessment. 

Siamese neural networks, comprising two identical 
feedforward NNs, are also widely used for similarity evaluation 
and vector comparison in many practical applications in 
computer science and statistics [16]. In [17], a Siamese 
network architecture called sHybridNet was discussed for 
image matching, aiming to enhance image similarity 
assessment across large datasets using deep learning 
techniques. This model consists of two identical branches that 
process two images independently utilizing a contrastive loss 
function to minimize the distance between similar images 
while maximizing it for dissimilar ones. Built on a hybrid CNN 
architecture, it outputs feature vectors from a specific layer 
after processing images through multiple convolutional layers. 
The method outperformed traditional techniques in image 
retrieval and showed strong generalization on unseen data, 
highlighting its effectiveness in challenging conditions such as 
occlusions and varying lighting. Thus, sHybridNet is a valuable 
tool for image matching with the potential for further 
improvement through larger, accurately labeled datasets. 

III. SYSTEM ARCHITECTURE AND DESIGN 
METHODOLOGY 

A. Image Similarity Model Training and Evaluation Pipeline 

The method comprises the following stages:  

 Dataset generation: At this stage, a synthetic dataset was 
created containing images with various attributes. 

 Image preprocessing: All images in the dataset were resized 
to a uniform size, and the pixel values were normalized for 
consistent input data. 

 Dataset split: the dataset was split into a training set (60%), 
a validation set (20%), and a test set (20%). 

 Training the dual-branch model: The proposed dual-branch 
model was trained on the training set, while the validation 
set was used to monitor and adjust the model. 

 Evaluation: The dual-branch model was evaluated using the 
test dataset based on several performance metrics. 

The similarity score provided by the trained model, ranging 
from 0 to 1, provides a quantitative measure of style coherence, 
where 1 indicates full consistency. The developed similarity 
assessment model supports the automated validation of 
presentations by providing an objective criterion for style 
consistency. Through the evaluation result generated by the 
model, users can quickly identify whether two slides follow the 
same style and whether they are visually and thematically 
connected. This enables easy detection of inconsistencies and 
optimization of the design, leading to more consistent and 
effective presentations. 

B. Image Dataset 

A custom synthetic image dataset was created following 
specific design guidelines to ensure style coherence. These 
guidelines consider multiple visual attributes, including 
background color, font type, text color, logos, and borders, to 
generate a wide range of stylistic combinations. The dataset 
consists of 6000 images, each carefully designed to reflect 
unique stylistic elements while maintaining overall consistency 
and providing a rich foundation for comparative style analysis 
tasks.  

Each image in the dataset features a distinct background 
color and includes randomly generated text ranging from 5 to 
50 characters in length. Depending on the chosen 
configuration, an image can contain embedded images, logos, 
and borders, with up to three text areas placed dynamically 
within it. This variety ensures a comprehensive representation 
of potential styles. To maintain balance, the dataset was evenly 
divided between pairs of images that share the same style and 
those that differ. Two images are considered identical in style if 
they use the same font type, border presence and style, 
background color, logo design, and logo placement (in cases 
where both images contain logos). 

The image generation process was based on a diverse 
selection of design elements: nine font types, six background 
colors, six text colors, three logos, five additional images, and 
four logo positions (top left, top right, bottom left, and bottom 
right). Each image was standardized to a size of 224×224 
pixels, while logos - when present - are consistently resized to 
10×10 pixels for visual harmony. Borders can be optionally 
added and customized by color and width to provide even 
greater stylistic variety. Figure 1 shows some examples of the 
generated images. 
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Fig. 1.  Sample images from the generated dataset. 

C. Image Preprocessing 

The image preprocessing pipeline aims to standardize the 
images in the dataset and prepare them for input into the model. 
The process begins by loading the image from a given path. 
Once the image is loaded, it is resized to a consistent size of 

224×224 pixels. This ensures uniformity in the dataset, which 
is crucial for image processing tasks, particularly when feeding 
images into machine learning models that require a fixed input 
size. After resizing, the pixel values are normalized, converting 
them from the range [0, 255] to the range [0, 1]. The 
normalization process aims to improve the model performance 
by ensuring that the pixel values are on a similar scale, which 
can make model training faster and more accurate.  

D. Model Architecture  

To solve the image coherence problem, a dual-branch CNN 
was designed to compare two inputs that represent slide images 
for binary classification. Figure 2 and Table I describe the 
Dual-Branch CNN architecture.  

 

 
Fig. 2.  Dual-branch CNN architecture for image similarity. 

TABLE I.  DUAL-BRANCH CNN ARCHITECTURE DETAILS 

 
The traditional Siamese network with identical branches 

uses a distance metric to compare embeddings after processing 
to determine the similarity between inputs. In contrast, the 

proposed dual-branch model concatenates the feature 
embeddings from separate branches and passes them through 
fully connected layers for final classification, allowing for 

Layer 
Components of a Convolutional Neural Network 

Feature Map Size Kernel size Stride Activation Additional Info 

Input Image 32×32 – – – – 
Conv Block 1 32 28×28 3×3 1 ReLU BatchNorm, MaxPool 2x2 
Conv Block 2 64 14v14 3×3 1 ReLU BatchNorm, MaxPool 2x2 
Conv Block 3 128 7×7 3×3 1 ReLU BatchNorm, MaxPool 2x2 
Conv Block 4 256 3×3 3×3 1 ReLU BatchNorm, MaxPool 2x2 

Fully Connected 256 – – – ReLU Dense layer, BatchNorm, Dropout (0.5) 
Fully Connected 1 512 – – – ReLU Dense layer, BatchNorm, Dropout (0.5) 
Fully Connected 2 256 – – – ReLU Dense layer, BatchNorm, Dropout (0.4) 
Fully Connected 3 128 – – – ReLU Dense layer, BatchNorm, Dropout (0.5) 

Output 1 – – – Sigmoid Dense layer 
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more specialized feature extraction. Each of the two parallel 
branches processes input through four convolutional blocks 
which extract features using Conv2D layers with 32, 64, 128, 
and 256 filters, combined with BatchNorm, ReLU activation, 
and MaxPooling. After feature extraction, each branch outputs 
to a fully connected layer with 256 units, BatchNorm, and 

Dropout for regularization. The outputs from both branches are 
then concatenated, merging their feature representations. The 
combined features are further processed through two fully 
connected layers with 512, 256, and 128 units, each 
incorporating BatchNorm and Dropout. Finally, a single output 
layer produces a value for binary classification. 

 

 
Fig. 3.  Siamese architecture for image similarity. 

E. Model Training  

The proposed model was implemented in Python and 
TensorFlow and trained on the generated dataset. The dataset 
was split into training and test datasets using an 80% to 20% 
ratio, thus the training dataset comprised 4800 images and the 
test dataset had 1200 images. The model training lasted 100 
epochs and used 5-fold cross-validation for hyperparameter 
tuning, with a batch size of 16 and a learning rate set to 3×10-4. 
Early stopping was also used as regularization to prevent 
overfitting. The model training was performed on the following 
experimental platform: Intel Core i7-8700K CPU @ 3.70GHz, 
64 GB RAM.  

IV. RESULTS AND DISCUSSION 

A. Evaluation Metrics and Results 

The evaluation of the model was based on a comparison of 
the proposed architecture with a Siamese network as a baseline. 
To evaluate the effectiveness of the suggested model, a range 
of metrics were calculated that capture various dimensions of 
image similarity and classification accuracy. Table II presents 
the results obtained, detailing performance indicators such as 
accuracy, precision, recall, F1-score, Jaccard similarity, Kappa 
coefficients, and ROC AUC [18]. Figure 4 presents the model's 
accuracy and loss for both the training and the validation data, 
for each of the five folds used in the cross-validation of model 
training. 
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TABLE II.  EVALUATION METRICS  

Metric Name 

Metric Value 

Expected values for 

moderate-stakes 

applications 

Siamese 

network 

Suggested Dual-

Branch CNN 

Dataset size 5 000 – 10 000 6000 6000 
Accuracy Above 0.9 0.81 0.85 
Precision Above 0.7 0.73 0.77 

Recall Above 0.9  1 0.99 
F1-Score 0.7-0.8 0.84 0.87 

Jaccard similarity 0.5-0.8 0.72 0.76 
Kappa coefficient 0.4-0.6 0.62 0.69 

ROC AUC 0.8-0.9 0.81 0.87 
Training time  12 min 20 min 

 

B. Performance Analysis 

The proposed Dual-Branch CNN model is compared 
against a traditional Siamese network. The baseline model 
featured a shared CNN feature extractor, which extracted deep 
visual features from both images using four convolutional 
blocks with convolutional layers, batch normalization, max-
pooling and global average pooling, followed by a fully 
connected layer with dropout for feature refinement. Both input 
images were identically processed and the corresponding 
feature vectors were outputted. These feature vectors were then 
compared using absolute difference, enabling the model to 
focus on variations between the two slides. The computed 
difference was subsequently passed through fully connected 
layers refining the feature representation before generating the 
final output. To ensure a fair comparison, both models 
followed the same training process. The base model design was 
influenced by [19], which explored Siamese Multi-Task CNNs 
for learning preference-based similarities from face images. 
However, in this baseline model, some modifications were 
introduced to maintain a consistent feature extraction structure 
between the base and proposed models. Figure 3 illustrates the 
full architecture of the baseline Siamese network model used in 
this study. 

The proposed Dual-Branch CNN model outperformed the 
baseline Siamese model across several key metrics including 
accuracy (0.85 vs 0.81), precision (0.77 vs 0.73), recall (0.99 vs 
1), F1-score (0.87 vs 0.84), Jaccard similarity (0.76 vs 0.72), 
Kappa coefficient (0.69 vs 0.62), and ROC AUC (0.87 vs 
0.81), reflecting its improved ability to capture relevant 
patterns and produce more accurate predictions. 

Improved precision suggests fewer false positives and a 
more reliable identification process, while the increase in F1-
score indicates a better balance between precision and recall. 
Some additional metrics also reflect the superior performance 
of the proposed dual-branch CNN compared to the Siamese 
model. The Jaccard similarity and the Kappa coefficient 
improvements highlight its ability to provide consistent 
predictions. Moreover, ROC-AUC increased from 0.81 to 0.87 
emphasizing the model's capacity to distinguish between 
classes. Although training time was slightly increased, the 
stronger performance justifies the trade-off, making the dual-
branch CNN a better choice for moderate-stakes applications. 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

Fig. 4.  Model's accuracy and loss during training: (a) fold 1, (b) fold 2, 
 (c) fold 3, (d) fold 4, (e) fold 5. 
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Fig. 5.  ROC curve of the Dual-Branch CNN model. 

 
Fig. 6.  ROC curve of the Siamese model. 

 
Fig. 7.  Confusion matrix of the dual-branch CNN model predictions on 
the test dataset. 

Figures 5 and 6 show the ROC curves of the dual-branch 
CNN and the Siamese models on the test dataset. Figures 7 and 

8 show the confusion matrices of the models on the test dataset. 
These results show that both models performed very well with 
FN and not so well with FP, due to the high similarity of the 
images in the dataset, as most images have similarities of more 
than 80% or 15 of 19 matching attributes. 

 

 
Fig. 8.  Confusion matrix of the Siamese model predictions on the test 
dataset. 

C. Discussion 

Based on the experimental results, the key strengths of the 
proposed dual-branch CNN model for image comparison and 
similarity evaluation for presentation style coherence can be 
summarized as follows:  

 Parallel feature extraction: Each branch independently 
extracts unique features from the input, enhancing the 
model's ability to capture varied aspects of image slides, 
such as stylistic or structural elements. This is beneficial for 
identifying even subtle differences, such as logo 
positioning, that contribute to overall coherence. 

 Modularity and flexibility: The dual-branch structure 
supports various tasks by tailoring each branch for different 
inputs. This versatility is advantageous for comparing 
styles, text-image relationships, and performing multiview 
analysis. 

 Effective feature combination: Concatenating outputs from 
both branches enriches feature representation by combining 
diverse features. This approach is beneficial for tasks that 
rely on insights from two distinct inputs, as is the use case 
presented for style comparison in images. 

 Regularization techniques: The use of BatchNormalization 
and Dropout mitigates overfitting, promoting robust 
learning, even with limited datasets, and enhances 
generalizability. 
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 Scalability: The model can accommodate larger datasets 
and more complex tasks by adding layers or branches, 
offering scalability for future needs. 

The weaknesses of the proposed model are: 

 Computational complexity: Utilizing four convolutional 
blocks per branch increases the parameter count and 
computational load, requiring substantial memory and 
processing resources. 

 Potential overfitting: Despite the regularization utilized, the 
model may still overfit with insufficient or homogeneous 
data. Careful training and data augmentation are crucial to 
maintaining generalizability. 

 Training time: The dual-branch depth of the proposed 
model results in extended training times, especially with 
large datasets or high-resolution images. 

 Interpretability challenges: Deep CNNs and particularly 
multi-branch architectures are often "black boxes," making 
it challenging to interpret specific learned features and the 
reasoning behind predictions. 

 Task-specific nature: While effective for dual-stream 
comparisons such as style coherence, the dual-branch CNN 
may not be necessary for simpler tasks where a single-
branch CNN would suffice. 

In future work, the proposed method can be further 
optimized using advanced metaheuristic-based optimization 
techniques to improve its efficiency and robustness. Particle 
Swarm Optimization (PSO) and Pelican Optimization 
Algorithm (POA) are optimization techniques that can handle 
complex multi-dimensional optimization problems efficiently 
and have demonstrated their effectiveness in various 
applications [20, 21]. PSO and POA can be used to refine the 
embedding space of the dual-branch CNN to enhance similarity 
detection. Both metaheuristics can also be used for 
hyperparameter tuning of the proposed dual-branch CNN 
architecture, providing a comprehensive search of the 
hyperparameter space and considering the optimization of the 
learning rate, batch size, and embedding dimensionality. 

V. CONCLUSION 

Automating the validation process of presentation style 
coherence enhances the efficiency of content creation, ensuring 
adherence to design standards in corporate branding, 
professional presentations, and design audits. The proposed 
approach aims to simplify the creation of polished 
presentations that meet design standards and foster 
engagement. This study introduced a novel dual-branch CNN 
model that advances the field by offering a more effective 
approach for recognizing style similarities in presentation 
slides. Unlike traditional methods, such as the baseline Siamese 
network, the proposed model captures complex visual patterns 
and subtle discrepancies, such as logo positioning or text 
alignment, which are critical to maintaining design coherence. 

The evaluation results demonstrate the superiority of the 
proposed dual-branch CNN model, outperforming the baseline 
Siamese model in several key metrics and underscoring its 

effectiveness. It achieved higher accuracy (0.85 vs 0.81), 
improved Jaccard similarity (0.76 vs 0.72), and a better Kappa 
coefficient (0.69 vs 0.62), demonstrating its enhanced ability to 
capture relevant patterns and provide more accurate 
predictions. The ROC-AUC also shows a significant 
improvement (0.87 vs 0.81), reflecting better discrimination 
between similar and dissimilar styles. Precision increased from 
0.73 to 0.77, reducing false positives and ensuring a more 
reliable positive identification process, while the F1-score 
increased to 0.87, indicating a better balance between precision 
and recall. These metrics highlight the ability of the proposed 
model to capture detailed design elements while balancing the 
identification of relevant positives and minimizing false 
detections. This performance gain stems from the novel dual-
branch architecture, where parallel feature extraction in each 
branch captures distinct stylistic and structural details. The 
integration of these outputs results in a comprehensive feature 
representation, making the model highly effective for nuanced 
style comparisons and text-image relationships. 

Compared to other works, the novelty of this approach lies 
in its modular and flexible design, which supports multiview 
analysis and adapts to detect more intricate patterns. This 
flexibility positions the model as a significant advancement 
over simpler architectures that struggle to capture subtle 
stylistic variations. Additionally, the use of dedicated 
regularization layers mitigates overfitting and ensures robust 
learning even with limited datasets, addressing a common 
limitation in similar works. The proposed architecture 
contributes to current research in the field by offering a 
practical tool for style validation with applications in 
presentation advisors aimed at assisting users in creating 
visually consistent and professional content. Although the 
increased complexity of the model demands more training 
time, the substantial performance improvements justify the 
trade-off, marking a significant step forward in the automation 
of design quality assessment. 
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