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ABSTRACT 

This work presents an efficient FPGA-based system for real-time detection of ECG arrhythmias using 

machine learning and fiducial windowing techniques. The proposed system integrates FPGA hardware 

acceleration to achieve low latency and high energy efficiency while maintaining superior classification 

accuracy, making it well-suited for portable health monitoring devices. ECG signals are preprocessed with 

a Butterworth filter to remove noise, followed by feature extraction through Discrete Wavelet Transform 

(DWT). The fiducial windowing method identifies key ECG components such as the P-wave, the QRS 

complex, and the T-wave, allowing the extraction of clinically relevant features. These features are then 

classified using a machine learning model implemented on an FPGA, allowing for rapid and accurate 

arrhythmia detection. The hardware-based solution significantly outperforms traditional software 

implementations in terms of real-time performance and power consumption. The proposed system 

achieved an impressive accuracy of 99.7%, a processing speed of 0.723 s, and a power consumption of 0.42 

mW. The design was implemented using Xilinx Vivado 2022 EDA tools on the Xilinx PYNQ FPGA 

platform. This study demonstrates the potential of FPGA-based machine learning systems for efficient and 

reliable real-time ECG analysis, paving the way for advanced wearable health monitoring applications. 
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I. INTRODUCTION  

Electrocardiography (ECG) plays a vital role in monitoring 
heart health, particularly in detecting arrhythmias, which are 
irregular heart rhythms caused by abnormal electrical signals. 
Common arrhythmias include atrial fibrillation, ventricular 
tachycardia, and sudden cardiac arrest. Accurate detection of 
these irregularities is crucial to managing cardiovascular 
disease, one of the leading causes of death worldwide. 
Traditional ECG systems are based on manual analysis, which 
can be time-consuming and prone to errors. This limitation 
highlights the need for intelligent and automated systems 
capable of accurately identifying arrhythmias. Machine 
Learning (ML) has become increasingly popular in ECG 
analysis due to its ability to make precise predictions from data. 
However, the deployment of ML models in real time, 
especially in portable devices, poses challenges in terms of 
computational demands, power usage, and response time. 

Field-Programmable Gate Arrays (FPGAs) offer an 
effective solution for real-time ECG monitoring in portable and 
wearable devices by combining the speed of hardware-level 

processing with the flexibility of software. FPGAs allow high-
speed, parallel processing with minimal energy consumption, 
which is essential for real-time ECG signal analysis. ML 
algorithms such as Support Vector Machines (SVMs), decision 
trees, and Convolutional Neural Networks (CNNs) have shown 
effectiveness in arrhythmia detection but require optimization 
for deployment on resource-constrained devices. Techniques 
such as model pruning and quantization reduce computational 
demands while maintaining model accuracy, making them 
suitable for FPGA implementation. Feature extraction is crucial 
for efficient ECG analysis, with components such as the P-
wave, the QRS complex, and the T-wave aiding in arrhythmia 
detection. Fiducial windowing focuses on these segments, 
simplifying data and enhancing processing efficiency. In 
FPGA-based ECG systems, fiducial windowing during 
preprocessing reduces noise and data volume, optimizing 
performance and resource efficiency for ML models. 

The proposed FPGA-based system combines ML with 
fiducial windowing for efficient real-time arrhythmia detection. 
By extracting features in real time, the system classifies signals 
as normal or arrhythmic, leveraging a pre-trained ML model 
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optimized through pruning and quantization. Implemented in a 
pipeline structure, each FPGA stage processes a part of the 
ECG signal analysis, ensuring low-latency and low-power 
performance ideal for portable devices. This approach provides 
a robust solution to continuous real-time ECG monitoring, 
balancing high classification accuracy with resource efficiency 
[1]. Real-time ECG detection using FPGA can ensure low 
latency and secure data processing, optimizing the 
computational efficiency of embedded systems [2, 3]. The 
objectives and major contributions of this work include: 

 Develops a real-time FPGA-based system for efficient and 
accurate ECG arrhythmia detection. 

 Integrates ML models with fiducial windowing for precise 
classification of key ECG features. 

 Employs advanced signal processing techniques such as 
Butterworth filtering and DWT for noise reduction and 
feature optimization. 

 Ensures low latency, energy efficiency, and robust 
performance to enable portable and wearable health 
monitoring applications. 

The field of ECG arrhythmia detection has seen significant 
advances through various methods, including traditional signal 
processing techniques, machine learning, and hardware 
implementations such as FPGAs. Historically, ECG analysis 
was performed by manual interpretation, which is prone to 
variability and errors. Early automated systems employed rule-
based algorithms, utilizing time-domain and frequency-domain 
analyses. Techniques such as Fourier and wavelet transforms 
have been utilized to extract features from ECG signals. The 
incorporation of ML techniques has revolutionized ECG 
analysis by automating the detection process and improving 
accuracy. Researchers have used various ML algorithms, 
including SVMs, decision trees, and neural networks, to 
classify arrhythmias effectively. More recently, deep learning 
approaches, particularly CNNs, have gained traction due to 
their ability to learn hierarchical feature representations directly 
from raw ECG data.  

Windowing techniques, including fiducial windowing, have 
emerged as effective methods for feature extraction in ECG 
signals, focusing on key points within the ECG waveform [4]. 
This approach allows efficient extraction of relevant features 
while reducing computational complexity. Previous studies 
have shown that using windowing techniques significantly 
improved the classification accuracy of arrhythmias, as it 
allows the model to focus on critical segments of the ECG 
waveform. FPGAs have become a popular tool in ECG 
monitoring systems due to their low latency and real-time 
processing capabilities. Researchers have developed hybrid 
architectures that combine hardware and software processing to 
optimize arrhythmia detection [1].  

The integration of AI and ML in ECG analysis has 
improved accuracy and reliability. AI-driven frameworks use 
deep learning techniques for automatic feature extraction and 
classification of ECG signals. Transfer learning has also been 
explored to address limited labeled datasets [1]. The ECG 
arrhythmia detection landscape is rapidly evolving, driven by 

advances in ML, windowing techniques, and FPGA 
implementations. Challenges, such as data variability and 
interpretability, remain in ML models [2]. In [4], ECG bio-
identification was performed using a hybrid of fiducial and 
non-fiducial techniques. This study introduced a fiducial 
windowing method that segments the ECG signal around the 
QRS complex, combined with Short-Time Fourier Transform 
(STFT) and histogram-based analysis for feature extraction. 
This method enhances identification accuracy by leveraging 
both temporal and spectral features, demonstrating robustness 
against noise and variability in ECG signals [4]. 

II. DESIGN OF THE PROPOSED SYSTEM  

Figure 1 shows the block diagram of the proposed system, 
which consists of several stages for ECG signal processing, 
starting with signal acquisition, followed by preprocessing, 
feature extraction, and ML-based classification. Initially, the 
ECG signal is filtered with a Butterworth filter to eliminate 
noise and artifacts. It is then processed using a 2-level 1D 
Discrete Wavelet Transform (DWT) to extract relevant 
frequency components. Fiducial windowing is employed to 
identify key features in the signal [1]. The use of fiducial 
windowing improves feature extraction accuracy, leading to 
more reliable arrhythmia classification. These features are input 
into a machine learning classifier deployed on PYNQ FPGA 
allowing for comparative analysis of performance, efficiency, 
and accuracy [2]. 

 

 

Fig. 1.  Overall block diagram. 

III. METHODOLOGY 

The MIT-BIH Arrhythmia Database, a key ECG signal 
resource accessible through PhysioNet, contains 48 half-hour 
recordings from 47 subjects. Data is stored in .dat files for 
signals and header files for metadata. With the wfdb.rdrecord() 
function, ECG signals and metadata were loaded into a 2D 
array format, allowing detailed analysis and feature extraction, 
which is essential for accurate classification and diagnosis. 
Each recording in the MIT-BIH database spans 30 minutes and 
is comprehensively annotated with detailed labels [5]. 
Visualizing raw ECG signals using matplotlib helps reveal 
signal characteristics, such as the QRS complex, and assess 
quality by identifying issues such as baseline drift and noise. 
Key ECG components include the P-wave (atrial 
depolarization), QRS Complex, T-wave, and RR interval, 
aiding heart rate and arrhythmia analysis. 

The transfer function ����  for an � th
 order Butterworth 

filter can be mathematically described as: 

���� � �
��	 


��

��    (1) 

The Butterworth filter used for ECG preprocessing employs 
two cutoff frequencies: a low cutoff frequency (����) at 0.5 Hz 
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to eliminate baseline noise and a high cutoff frequency (�����) 

at 40 Hz to suppress high-frequency noise. These filters are 
essential for normalizing frequencies in digital 
implementations, utilizing (2) and (3).  

�′ ��� � � ∗ ����
�


    (2) 

�′ ���� � � ∗ � !" 
�


    (3) 

The Butterworth filter is implemented using the bilinear 
transformation method, converting the analog filter design into 
a digital one as: 

� � ��

�#$%&     (4) 

The resulting digital filter can then be expressed in the form 
of a difference: 

'(�) �  *+,(�) +  *�,(� − 1) +  … +  *1,(� − 2) −  
    3�'(−1)− . . . − 35'(−6)   (5) 

This content explains the filtering process for ECG signals. 
The output signal '(�) represents the filtered ECG, while the 
input ,(�) is the raw noisy ECG [6]. Figure 2 shows a filtered 
ECG signal, removing noise and artifacts for a cleaner 
waveform. The plot shows vertical peaks corresponding to 
QRS complexes, crucial for heart condition diagnosis. Figure 3 
shows the filtered ECG signal visualization for the first 100 
samples. 

 

 
Fig. 2.  Filtered ECG signal. 

 

Fig. 3.  Filtered ECG signal visualization (first 100 samples). 

A. Feature Extraction 

The ECG signal is processed using a 2-level 1D DWT for 
segmentation and analysis, separating key components such as 
the R-wave and the T-wave [4, 7]. Fiducial windowing locates 
the R-wave peak and T-wave onset, extracting the R-R interval, 
wave amplitude, and slope for diagnostic analysis. 

78,:  �  ;,(�) · =8,:(�)   (6) 

where 78,:  represents the wavelet coefficient at scale >  and 

position ?, ,(�) is the ECG signal, and =8,:(�) is the wavelet 

function at scale > and translation ?. In the 2-level DWT, the 
ECG signal is decomposed into approximation (@) and detail 
(A) coefficients. At the first level, the signal is divided into: 

,�B� �  @� + A�    (7) 

At the second level, the approximation @�  is further 
decomposed into: 

@� �  @� + A�    (8) 

So the overall signal representation becomes: 

,�B�  �  @� + A�  + A�   (9) 

where @�  denotes the low-frequency components 
corresponding to the baseline of the ECG, A�denotes the higher 
frequency components corresponding to features such as the 
QRS complex, and A� denotes the highest frequency 
components, including noise and fine details [8]. Figure 4 
shows a filtered signal plot with an amplitude and sample 
number over 10,000 and Figure 5 illustrates the frequency 
response of a bandpass filter. 

 

 
Fig. 4.  Filtered signal plot with amplitude. 

 

Fig. 5.  Frequency response. 
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B. Fiducial Windowing for Key Feature Extraction from 
Fiducial Points 

Fiducial windowing is a technique that isolates key points 
in an ECG signal for focused analysis of arrhythmias [4]. Once 
identifying fiducial points such as the R-wave peak and the T-
wave onset, key features are extracted from the ECG signal to 
assess heart activity and diagnose cardiac conditions. The R-R 
interval, the time difference between successive R-wave peaks, 
is a critical feature that indicates heart rate and its variability 
and can be calculated using: 

CC� �  BD!E& − BD!    (10) 

where BD!  and BD!E& represent the times of consecutive R-wave 

peaks.  

Wave amplitude, including that of the R-wave, the P-wave, 
and the T-wave, is measured as the difference in voltage 
between the peak and baseline. For example, the R-wave 
amplitude is given by: 

@D �  ,�BD�  −  ,FGHI��JI   (11) 

where ,�BD�  is the signal value at the R-wave peak, and 
,FGHI��JI  is the signal value at the baseline.  

The slope of the ECG waves, representing the rate of 
change in electrical activity, is calculated as the first derivative 
of the signal around the R-wave peak:  

KLMNOD � PQ
PR        (12) 

where S, is the change in the signal amplitude and SB is the 
corresponding time interval. 

C. Training the Machine Learning Model: 

ECG classification is essential for detecting cardiac 
abnormalities, with deep learning models using hybrid neural 
network architecture to automate this process [9]. The 
PhysioNet database distinguishes four key conditions: 
hyperkalemia (high potassium, indicated by peaked T-waves), 
hypocalcemia (low calcium, shown by prolonged QT 
intervals), normal (no abnormalities), and tachycardia (elevated 

heart rate, indicated by shortened intervals). ECG signals are 
preprocessed through normalization, segmentation, and 
labeling to minimize categorical cross-entropy loss [10]. The 
model's loss function quantifies the difference between true 
labels and predicted probabilities for each class to enhance 
classification accuracy [11]: 

T � − ∑ '�LMV �ŷ��X
�Y�     (13) 

where '�is the true label (1 for the correct class, 0 otherwise), 
and ŷ�  is the predicted probability for class Z. 

IV. HARDWARE IMPLEMENTATION: 

The trained ML model was implemented on the PYNQ Z2 
FPGA board, a high-performance platform for AI and ML 
applications. Powered by the Xilinx Zynq-7000 series SoC, the 
PYNQ Z2 integrates programmable logic (FPGA) and ARM 
cores, providing a flexible environment for real-time signal 
processing [12]. The PYNQ framework, which includes Python 
libraries, enables seamless integration with the FPGA, 
facilitating efficient execution of the ECG arrhythmia detection 
model. The board's parallel processing, low latency, and low 
power requirements make it ideal for portable, real-time ECG 
monitoring. Its reconfigurable architecture ensures optimized 
performance and resource efficiency [13, 14].  

V. PERFORMANCE METRICS 

Performance metrics are quantitative measures to assess an 
ML model or a system's efficiency and effectiveness. These 
measurements provide insights into the model's performance in 
terms of its ability to make accurate predictions, classify 
instances correctly, and generalize to unseen data [15]. 

A. AI/ML Model Performance Analysis 

Table I shows the metrics used for the AI/ML model 
performance analysis. 

B. FPGA Device Performance Analysis: 

Table II describes the metrics used for FPGA device 
performance analysis. 

 

TABLE I.  AI/ML MODEL PERFORMANCE ANALYSIS 

 Metric Description Equation 

1 
Confusion 

matrix 

True Positives (TP) The number of classes correctly predicted as positive. - 

False Positives (FP) 
The number of classes incorrectly predicted as positive when they are 

actually negative. 
- 

True Negatives (TN) The number of classes correctly predicted as negative. - 

False Negatives (FN) 
The number of classes incorrectly predicted as negative when they are 

actually positive. 
- 

2 Accuracy 
The percentage of correctly identified examples in the dataset relative to 

all occurrences. 
@[[\]3[' � ^_ +  ^2 

^_ + `_ + ^2 + `2 

3 Precision 
The percentage of true positive predictions among all instances predicted 

as positive. 
_]O[Z�ZM� � ^_

^_ + `_  

4 Recall 
The percentage of true positive predictions among all real positive 

examples in the dataset. 
CO[3LL � ^_

^_ +  `2  

5 F1 score 
The harmonic mean of precision and recall, providing a balanced 

evaluation of performance, especially for imbalanced datasets. `1 �[M]O � 2 ×   _]O[Z�ZM� × CO[3LL
_]O[Z�ZM� +  CO[3LL 
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TABLE II.  EDGE DEVICE PERFORMANCE ANALYSIS 

 Metric Description Equation 

1 Branch misses 
Occurs when the processor's branch prediction mechanism fails to 

predict the outcome of a branch instruction. 

Branch Misses = Total Branch Instructions - Correctly 

Predicted Branches 

2 Bus cycles 
The number of cycles the CPU spends waiting for data transfers on 

the system bus. 

Bus Cycles = (Memory Access Time) / (CPU Clock Cycle 

Time) × Number of Memory Accesses 

3 Cache misses 
Occurs when data requested by the CPU is not found in the cache 

memory. 
Cache Misses = Total Memory Accesses - Cache Hits 

4 CPU cycles Total cycles executed by the CPU during program runtime. CPU Cycles = CPU Clock Rate × Program Execution Time 

5 Instructions Total number of instructions executed by the CPU. Instructions = Sum of all executed instructions 

6 
Instructions Per 

Cycle (IPC) 
Average number of instructions executed per CPU cycle. IPC = Instructions / CPU Cycles 

7 Time elapsed Total wall-clock time taken to execute the program. Time Elapsed = End Time - Start Time 

8 Energy The amount of work a system can do during its operation. Energy = Power × Time  

 

VI. RESULTS AND DISCUSSION 

A. AI/ML Model Performance Results 

Figure 6 illustrates the performance analysis of the AI/ML 
model. Figure 6(a) displays the accuracy and classification 
report, while Figure 6(b) presents the confusion matrix results. 
The analysis was carried out using the TensorFlow Lite 
framework and the MobileNetV2 model in Google Colab to 
evaluate the AI/ML model's performance. 

The MIT-BIH Arrhythmia Database was used as the 
primary dataset for ECG signal processing and analysis. From 
the dataset, 60% of the data was allocated for training to 
develop and optimize the model, while the remaining 40% was 
reserved for testing to evaluate the model's performance. 

 

(a) 

 

(b) 

 

Fig. 6.  Performance analysis. 

B. PYNQ FPGA Results 

Table III provides detailed performance profiling metrics 
by using the PERF profiler for three critical stages: Feature 
extraction, ECG preprocessing, and classification of ECG 
signals when executed on the PYNQ FPGA board. The 
profiling results include key hardware counters such as branch 
misses, cache misses, CPU cycles, and instructions, which 
reflect the computational efficiency and memory performance 
of each process. 

TABLE III.  EDGE DEVICE PERF PROFILING RESULTS 
EXECUTED ON PYNQ FPGA 

 
Feature 

extraction 

ECG 

preprocessing 

ECG  

classification  

Branch misses 1,912,71 1,841,679 1,895,263 

Cache misses  1,039,007 1,384,698 1,044,776 

Cache references 27,893,441 28,763,364 27,854,907 

CPU cycles 141,111,349 160,596,365 141,526,115 

Instructions 77,722,026 78,076,671 77,591,158 

Time elapsed (s) 0.221188959 0.279711334 0.221537474 

IPC 0.55 0.49 0.55 

 
The CPU cycles consumed were approximately 141 million 

for feature extraction, 160 million for ECG preprocessing, and 
141 million for classification. The instructions executed during 
these processes are approximately 77.7 million, 78 million, and 
77.5 million, respectively. The total time elapsed for execution 
is 0.22 s for feature extraction and classification, while 
preprocessing takes 0.28 s. The IPC for feature extraction and 
classification is 0.55, with ECG preprocessing slightly lower at 
0.49. PYNQ is more suitable for applications that demand high 
parallel processing and specialized hardware acceleration, such 
as real-time signal processing, because of its reconfigurable 
architecture and ability to optimize for low-power operation in 
complex computational tasks. 

Table IV shows a comparative analysis of the proposed 
with existing models based on platform, accuracy, processing 
speed, and power consumption. The methods in [9, 10, 11, 12] 
and the proposed one achieved accuracy levels of 99.67%, 
96%, 99.20%, 86.7%, and 99.7%, while the power 
consumption was 0.45, 3.3, 2.81, and 0.42 mW, with a 
processing speed of 15, 0.017, 0.2, 2.875, and 0.723 s, 
respectively. However, the proposed model strikes the best 
balance between accuracy, processing speed, and power 
efficiency, making it the most optimal choice for real-world 
applications that require high precision and power efficiency. 
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TABLE IV.  COMPARISON OF PROPOSED WITH PREVIOUS 
APPROACHES 

Study Platform 
Accuracy 

(%) 

Processing 

speed (s) 

Power 

consumption 

(mW) 

Dataset  

used 

[9] FPGA 99.67 15 0.45 PTB database 

[10] FPGA 96 0.017 3.3 

Temporal 

Convolutiona

l Networks 

[11] FPGA 99.20 0.2 - 

PTB 

diagnostic 

ECG 

database 

[12] FPGA 86.7 2.875 2.81 
ECG 

recordings 

Proposed 

model 
FPGA 99.7 0.723 0.42 

MIT-BIH 

Arrhythmia 

Database 

 

VII.  CONCLUSION 

This study presents an efficient, real-time FPGA-based 
system for ECG arrhythmia detection, integrating ML and 
fiducial windowing techniques. The system utilizes Keras and 
TensorFlow Lite for the ML model, allowing robust 
classification with high accuracy. The proposed system was 
implemented on the PYNQ FPGA board, leveraging its parallel 
processing capabilities for low latency and power efficiency. 
Fiducial windowing enhances feature extraction accuracy by 
focusing on critical ECG components, while a Butterworth 
filter reduces noise, and DWT extracts essential features 
efficiently. The PERF profiler was used for performance 
analysis, evaluating system metrics such as execution time. 

The proposed model achieved a classification accuracy of 
99.7%, with a processing speed of 0.723 s and a power 
consumption of 0.42 mW. This balance outperforms the 
existing methods in [9, 10, 11, 12], which, despite achieving 
accuracies of 86.7-99.67%, suffer from higher power 
consumption or slower speeds. Although GPU-based solutions 
can deliver faster processing, their power consumption can 
reduce energy efficiency. The proposed model excels with its 
superior accuracy, optimized energy efficiency, and moderate 
speed, making it the most practical solution for real-world low-
power applications. Future studies could explore CNNs, RNNs, 
and hybrid ML approaches for enhanced ECG analysis in 
resource-constrained environments. 
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