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ABSTRACT 

This research investigates the application of the Deep Learning (DL) U-Net architecture for building 

rooftop segmentation in densely populated urban areas with irregular housing patterns. The research 

explores the effectiveness of two loss functions - Binary Cross Entropy (BCE) and Dice Loss (DLs) - to 

optimize the segmentation accuracy. The present study utilized Small-Format Aerial Photography (SFAP) 

images processed into orthophotos with a final ground sampling distance of 5 cm. The study area, located 

in Bogor, Indonesia, features both regular and irregular housing patterns, making it an ideal testing 

ground for the segmentation model. The U-Net model, having been utilized EfficientNetB6 as the encoder 

and having been trained with augmented data, demonstrated stable performance across metrics, such as 

accuracy, precision, recall, and F1-score. The results show that the DLs function outperformed BCE, 

achieving an average Intersection over Union (IoU) score of 96.8% compared to the 87% score for BCE, 

indicating that DLs is more effective for this application. The study further enhances the segmentation 

results by converting the raster data into a vector format using the Ramer-Douglas-Peucker (RDP) 

algorithm, which simplifies and smooths the polygonal shapes of the segmented rooftops. The combination 

of the U-Net, DLs and RDP algorithm provides high accuracy results and high usability of the 

segmentation outputs in practical applications, such as urban planning and disaster management scenarios 

where accurate rooftop delineation is critical. 

Keywords-deep learning; building rooftop; semantic segmentation; drone data; urban mapping 

I. INTRODUCTION  

DL has brought transformative advantages to building 
rooftop mapping, enabling the rapid creation of high-definition 
maps through precise rooftop delineation at the city scale using 

high-resolution satellite and aerial images [1, 2]. These 
methods have proven both efficient and accurate at extracting 
building rooftops, even when the training data are limited [2, 
3]. DL architectures, such as U-Net and Fully Convolutional 
Networks (FCNs), have exhibited a notable ability to converge 
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quickly and achieve high accuracy when applied to Very High 
Spatial Resolution (VHSR) images, making them ideal for this 
application [4]. The applications of DL in rooftop mapping 
have been utilized to support urban applications, disaster 
management, and sustainable urban planning [3, 5, 6]. DL has 
been integrated with Geographic Information Systems (GIS) to 
accurately evaluate the rooftop solar potential in urban areas 
[7]. 

Despite these advancements, challenges remain in 
optimizing DL for rooftop mapping. A primary issue is scale 
variance, which limits the delineation accuracy, particularly for 
smaller buildings [1]. Furthermore, the automatic labeling of 
the training data and the generalizability of models across 
different environments remain unresolved challenges [2]. 
Additionally, the effect of the data volume on model 
performance is an area that warrants further investigation [4]. 
Another problem in rooftop mapping with imagery data is how 
to produce output data in the form of vectors from the 
segmentation results with regular and smooth shapes, given the 
nature of the raster-based input data. One solution is to 
implement a simple polygonized algorithm. The polygonized 
algorithm stands out for its simplicity, speed, adaptability, and 
efficiency, making it a robust choice for various applications in 
computational geometry and surface modeling [8-10]. 

This research aims to implement the U-Net algorithm with 
two different loss functions, namely, BCE and DLs to produce 
building roof segmentation in irregular housing complexes. It 
also employs the RDP polygonized algorithm to produce 
smooth vector output data for use in GIS. 

II. RELATED WORK 

A. Deep Learning for Building Rooftop Mapping 

DL has potential applications in building roof mapping, but 
several challenges have hampered its effectiveness. These 
challenges include shadows and tree-covered buildings [11, 
12], and irregular or complex building shapes [13]. Traditional 
model performance often struggles with irregular shapes during 
vectorization, leading to inaccuracies in the final result [11]. 
Complex buildings shading and various roof obstructions can 
lead to a suboptimal performance [14]. Incorporating prior 
knowledge of the building functions significantly improves 
detection accuracy, and utilizing fast learning to incorporate the 
building types into the model improves the identification of 
rooftops suitable for applications, such as photovoltaic energy 
development [15]. Another challenge in the use of DL is the 
issue of computational efficiency. The high computational 
demands of the DL models can be prohibitive. Low complexity 
models, such as the U-Net variants, have been proposed to 
reduce the training time while maintaining accuracy [12]. 
Authors in [16] proposed refining the U-Net elements and 
using ensemble models to improve the segmentation accuracy, 
whereas authors in [17] proposed addressing this problem by 
using city-specific models, optimal band selection, and 
automatic thresholding for segmentation. As mentioned in [18], 
the availability of publicly accessible high-resolution images, 
data labels, and training datasets also becomes another 
challenge. This limitation can cause high costs in data 
provisioning and in the labor-intensive manual labeling process 

[19], whereas addressing data sparsity and quality requires 
enhancing the training datasets [20]. 

Several strategies can be employed to enhance the accuracy 
of the DL-based rooftop mapping, focusing on model 
architecture optimization, data augmentation, and improved 
post-processing techniques. These approaches address the 
inherent challenges of complex urban environments and 
diverse rooftop geometries, with model architecture 
optimization being performed utilizing advanced neural 
networks [19] and hybrid models [12]. The use of models, such 
as Asymmetric Neural Network (ANN) and Dual Attention 
Network (DANet), has shown significant improvements in 
accuracy, with ANN achieving 96% in rooftop detection [19]. 
The integration of low complexity models, such as UNet-
AstPPD, which incorporates Atrous Spatial Pyramidal Pooling 
(ASPP), can improve the feature selection while maintaining 
efficiency [12]. Dataset enrichment, performed in [21], uses 
data augmentation techniques to create a more robust training 
dataset, which is critical for models, such as Mask Region-
based Convolutional Neural Network (Mask R-CNN), to better 
generalize under varying conditions [21]. The implementation 
of holistic edge classification and planar graph reconstruction 
can refine the delineation of complex roof boundaries and 
address issues of irregular polygon shapes in post-processing 
[11]. Table I displayes the most important research using DL 
and satellite / SFAP imagery data for building rooftop 
segmentation. 

B. Ramer-Douglas-Peucker Algorithm 

The RDP algorithm, also known as the Douglas-Peucker 
algorithm, is widely employed for polyline simplification in 
vector graphics and map generalization. The RDP algorithm 
effectively reduces the number of vertices in a polyline, which 
helps to compress the data without significant loss of detail, 
and improved versions of the RDP algorithm, such as those that 
incorporate radial distance constraints, have demonstrated 
better time efficiency compared to the original algorithm [22]. 
Parallel implementations of the RDP algorithm on multi-core 
processors significantly improve performance, enabling real-
time simplification and display of the vector data [23, 24]. 
Enhanced versions of the RDP algorithm, like the Gestalt-
based Douglas-Peucker (GDP) algorithm, maintain higher data 
quality and ensure that the area of simplified polygons remains 
unchanged [25]. Modifications to the RDP algorithm can 
preserve the topological structure and shape characteristics of 
contours, preventing problems, such as intersection or self-
intersection [26]. In summary, the RDP algorithm's main 
advantages, shown in Table II, are its ability to efficiently 
compress data, improve processing time, support real-time 
applications, maintain data quality, and preserve topological 
integrity. These advantages make it a valuable tool in various 
applications, particularly in GIS and vector graphics 
simplification. 

III. METHODOLOGY 

The research consists of two main stages, defined as the 
building roof segmentation and polygonization of the raster 
segmentation results into vector polygons. The segmentation 
stage consists of the sub-stages of input data and pre-
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processing, training data with the U-Net algorithm using two 
different loss functions, the testing data stage, and finally the 
data validation stage. The next stage is polygonization using 

the RDP algorithm to obtain the result in the form of smoothed 
vector data, which be can then used in various GIS tools. 
Figure 1 depicts the research workflow. 

TABLE I.  PREVIOUS RESEARCH ON THE IMPLEMENTATION OF DL IN ROOF MAPPING USING SATTELITE OR AERIAL/UAV DATA 

Reference Research gap DL model Dataset Result 

[11] 
Delineating complex and irregular 

polygon shapes 

Attention-based neural network; 

Planar graph reconstruction for 

building roof plane extraction 

VHR aerial images, building 

footprints, the building internal 

roof planes and LIDAR point 

cloud 

Combined dataset model 

achieved F-score of 0.43 / 

Individual datasets had lower F-

scores: 0.37 and 0.32 

[12] 
The diversity and complexity of 

building structures 

UNet – AstPPD; UNetVasyPPD 

with VGG backbone 
Satellite imagery 

UNet-AstPPD shows better 

accuracy and DLs / Training 

times: 25.44 and 29.23 minutes 

[13] 

Effectiveness of DL models for 

building extraction is unexplored / 

Critical features for distinguishing 

buildings from other land cover 

types are unclear 

Convolutional Neural Network 

(CNN) 

High-resolution RGB images / 

Geographic Object-Based Image 

Analysis (GEOBIA) framework 

Some shallow learning 

classifiers perform similarly to 

DL models / Critical features for 

building extraction are 

identified 

[19] - 
ANN; DANet; PP-LiteSeg; 

Deeplab3 

Large dataset of labeled UAV 

rooftop building images / 

Superpixel regions assigned 

binary labels for rooftop 

presence 

ANN model achieved the 

highest accuracy with 96% / 

DANet model followed with an 

accuracy of 95.09% 

[15] 

Most methods ignore building type 

prior information / Deeplabv3+ 

backbone presents suboptimal 

performance without prior 

knowledge 

Pre-trained semantic segmentation 

network; Deeplabv3+, detects 

rooftops / Prompt learning 

incorporates building types as prior 

knowledge 

- 

Achieved 81.18% accuracy in 

rooftop PV potential prediction / 

Improved IoU by 10.97% with 

prior knowledge 

[21] 

The paper does not specify metrics 

indicating improved accuracy of 

DL techniques 

Mask R-CNN / Data augmentation 

techniques for model training 

Annotated satellite images of 

solar PV rooftops created / 

Augmented dataset enhances 

generalization and prevents 

overfitting 

Superior performance in 

detecting solar PV installations / 

Exceptional capability in 

delineating individual solar 

panels 

 

TABLE II.  SOME ADVANTAGES AND DESCRIPTIONS OF 
RDP ALGORITHMS 

Advantage Description References 

Compression 

efficiency 

Reduces vertices while maintaining 

shape 
[22] 

Time 

efficiency 

Improved algorithms offer better 

time efficiency 
[22] 

Real-time 

performance 

Parallel implementations enhance 

real-time processing 
[23, 24] 

Data quality 

Enhanced algorithms maintain higher 

data quality and polygon area 

consistency 

[25] 

Topological 

integrity 

Prevents intersection or self-

intersection in contours 
[26] 

 

 

Fig. 1.  Research workflow. 

A. Dataset and Research Area 

The primary dataset consists of SFAP images processed 
into orthophotos with a final ground sampling distance of 5 cm. 
Raw images are acquired using a CHCNAV P330 PRO VTOL 
unmanned aerial vehicle equipped with a Sony A7RIV full-
frame camera sensor, with 80% front overlap and 60% side 
overlap for image acquisition. The flight altitude for aerial 
imagery acquisition is averaged at 400 meters, with the flight 
path adjusted to the direction of the nearest local air force base 
(Atang Sanjaya airport, Bogor, Indonesia). Orthophoto 
processing was done using the Agisoft software with a final 
ground sampling distance of 5 cm. 

The location of the research area is in a densely populated 
residential area with irregular building patterns in the city of 
Bogor, West Java, Indonesia (6°32'22"S, 106°48'40"E, and 
6°32'53"S 106°47'57"E). Figure 2 illustrates two different 
building characteristics, the first characteristic (a) is a regular 
residential area, but the buildings are still attached to each 
other, besides the roof pattern has the same color; whereas the 
second characteristic (b) is an irregular densely populated 
residential area, which has irregular house and roof positions. 

B. Data Pre-processing 

Before the image data are labeled, the orthophotos are pre-
processed in the QGIS software to subdivide the images into 
smaller chunks of 1024 × 1024 pixels. Each scene produces 
approximately 150 images in ".tiff" format. The images are 
labeled into two main criteria, building and non-building, as 
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portrayed in Figure 3(b) in white and black color, respectively. 
The feature extraction process will rely on the accuracy of this 
labeling process, especially since the size of the chunks is 
rather small. 

 

 

Fig. 2.  Visualization of drone data on the research area in Bogor City, 

Indonesia. 

  
(a) (b) 

Fig. 3.  Drone imagery labeling data: (a) Example of drone data with a 

building rooftop view and (b) the result of imagery labeling process.  

C. Model Development 

The U-Net model uses EfficientNetB6 as the encoder, as 
can be seen in Figure 4, with a total of 22.7 million parameters, 
and is trained utilizing a 6GB RTX 3060 GPU and 16GB 
memory. The U-Net model receives 512 × 512-pixel input, by 
first resizing the training image. Augmentations, such as 
vertical flip and horizontal flip, are performed, resulting in a 
300-image dataset, which is 90% for training (270 images) and 
10% for validation (30 images). The deployed model has some 
adjustments from the original U-Net model, which in this study 
were carried out using 32, 64, 128, 256, and 512 kernels, with 
the aim of reducing computation during training, due to limited 
hardware resources.  

 

 

Fig. 4.  U-Net model architecture with EfficientNetB6. 

D. Polygonized Raster to Vector 

The technique implemented in this research to convert the 
segmentation results, which were in the form of raster data, into 
the vector polygon form uses the RDP algorithm [27] as a 
simplified polygon by reducing the points on the polygon line. 
Simplification is done so that the polygon results have firmer 
lines, since polygons are generated from segmentation contours 
that have a lot of curvature, which tends to be non-smooth. The 
pseudocode for the RDP algorithm is: 

function DouglasPeucker(PointList[], 

epsilon) 

# Find the point with the maximum distance 

Dmax = 0 

index = 0 

end = length(PointList) 

for i = 2 to (end - 1) { 

d = perpendicularDistance(PointList[i], 

Line(PointList[1], PointList[end]) 

if (d > dmax) { 

index = i 

dmax = d 

} 

} 

ResultList[] = empty; 

# If max distance is greater than epsilon, 

recursively simplify 

if (dmax > epsilon) { 

# Recursive call 

recResults1[] = 

DouglasPeucker(PointList[1...index], 

epsilon) 

recResults2[] = 

DouglasPeucker(PointList[index...end], 

epsilon) 

# Build the result list 

ResultList[] = 

{recResults1[1...length(recResults1) - 

1], 

recResults2[1...length(recResults2)]} 

} else { 

ResultList[] = {PointList[1], 

PointList[end]} 

} 

# Return the result 

return ResultList[] 
 

E. Training Metrics and Loss Function 

The research experiment compared two loss functions, BCE 
and DLs, to see which one has better prediction results by 
evaluating the IoU value. These loss functions have been 
widely used as the standard procedure to improve the 
segmentation result in binary classification tasks [28]. The 
formula of each loss function is: 

 

   
1

1
log

                         + 1 log 1

N

true pred
i

true pred

BCE y y
N

y y



  

   


 (1) 
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A B
Dice Loss

A B
   (2) 

Additional metrics used for the evaluation are the accuracy, 
precision, recall, and F1-score with the following formulas: 

TN TP
Accuracy

TN TP FN FP




  
  (3) 

TP
Precision

TP FP



    (4) 

TP
Recall

TP FN



    (5) 

2 Precision Recall
F1- score

Precision Recall

 



  (6) 

where TP  is true positive, TN is true negative, FP  is false 

positive, and FN is false negative. 

IV. RESULTS 

A. Training Model Results 

During model training, this study uses the checkpoints to 
save the best model based on the loss value with additional 
learning rate callbacks being applied, aiming to reduce the 
learning rate value when the improvements are not significant. 
The minimum learning rate value is set to 1e-8. The basic U-
Net model is trained with a maximum number of 30 epochs, 
batch size 1, learning rate 1e-4, and Adam optimizer. 
EfficientNetB6 is selected as the encoder, and DLs and BCE 
are used as the loss function.  

The accuracy training value shows that BCE has a slightly 
higher value than DLs, as evidenced in Figure 5. At epoch 8, 
DLs accuracy validation experienced the lowest decline at 0.89 
and began to stabilize at epochs 17 to 30 with an average value 
of 0.93. As for the accuracy, BCE exhibits a stable value at 
epochs 7 to 30 with an average value of 0.93. The average 
training time for the models that use BCE is 36 minutes, while 
the models that utilize DLs take 35 minutes, which 
demonstrates the relatively similar use of computational power. 
Based on the training loss, the value of the BCE loss validation 
is higher, with its lowest point occurring at epoch 9 with a 
value of 0.17, while the highest value occurrs at epoch 12 with 
a value of 0.307. In contrast, the DLs validation exhibits a low 
value, with the lowest value being observed at epoch 10 and the 
highest, 0.099, at epochs 7 to 8, as depicted in Figure 6. The 
results of the training precision value reveal that the BCE 
precision validation has a slightly higher value, with the 
highest, 0.968, being at the epoch 18 and the lowest, 0.943, 
being at epoch 7. DLs validation precision has the lowest value, 
0.91, at epoch 7 and the highest, 0.96, at epoch 13, as 
illustrated in Figure 7. Regarding the recall of the U-Net model 
training results, the DLs recall validation has the lowest value, 
0.84, at epoch 8 and the highest, 0.93, at epoch 10 whereas the 
BCE recall validation has the higher lowest point at epoch 4 
with a value of 0.86, and the highest at epoch 22 with a value 
of 0.91, as depicted in Figure 8. 

 
Fig. 5.  Training and validation accuracy with BCE and DLs. 

 

Fig. 6.  Training and validation loss with BCE and DLs. 

 
Fig. 7.  Training and validation precision with BCE and DLs. 
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Fig. 8.  Training and validation recall with BCE and DLs. 

The F1-score analysis shows that DLs F1-score validation 
is the lowest at epoch 8 with a value of 0.89 and the highest at 
epoch 10 with a value of 0.938, whereas BCE F1-score 
validation is the lowest value at epoch 6 with a value of 0.92 
and the highest at epoch 10 with a value of 0.93, as can be seen 
in Figure 9. 

 

 

Fig. 9.  Training and validation F1-score with BCE and DLs. 

In the training part, the accuracy, loss, precision, recall, and 
F1-score showed good and stable results during the training 
process. At epoch 10, the F1-score validation value of DLs 
shows a momentary decrease, with a value of 0.893, and the 
validation F1-score value of BCE has a stable condition during 
training. 

B. Evaluation Model Results 

In the model evaluation, the IoU value was used as the 
main parameter to evaluate the segmentation results of the U-
Net model, by comparing BCE and DLs, as demonstrated in 
Table III. A threshold of 0.75 was utilized to perform the 
segmentation in both models. 

TABLE III.  BUILDING ROOF SEGMENTATION RESULTS 
USING U-NET WITH BCE AND DLS 

No RGB Image  Label Image BCE DLs 

1 

    

2 

    

3 

    

4 

    

5 

    

 
Table IV shows the segmentation results of the models 

trained on 50 test images with two different loss functions. 
From the calculation of the IoU values for both models, the U-
Net with DLs as a loss function produces segmentations with 
higher IoU values compared to BCE, with an average value of 
87% for the model wih BCE and 96.8% for the model with 
DLs. 

TABLE IV.  IOU SCORE COMPARISON BETWEEN BCE AND 
DLS BASED ON TABLE III 

Image no. BCE IoU (%) DLs IoU (%) 

1 94.09 98.02 

2 71.77 96.12 

3 92.51 96.58 

4 90.72 94.26 

5 85.80 93.85 

Average 87 96.8 

 
After segmenting the test image, the model segmentation 

results are converted into a polygon form by applying the RDP 
algorithm to perform vector smoothing. The results of vector 
polygon without simplification appear more indented than 
those with simplification, where the polygon line shape is 
straighter and smoother, as illustrated in Figure 10. The use of 
RDP allows for clearer boundaries between the segments of 
irregular buildings and buildings with a diagonal edge relative 
to the image axis. While the results are not noticeable for most 
regular buildings, this study’s results exhibit that the 
combination of these methods is highly recommended to 
improve the segmentation results in more complex cases. 
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(a) 

     

(b) 

     

Fig. 10.  Comparison of polygonized results between U-

Net(EfficientNetB6)+DLs (a) and U-Net(EfficientNetB6)+DLs +RDP (b). 

V. CONCLUSION 

The Deep Learning (DL) segmentation method using U-Net 
with EfficientNetB6 as the encoder has demonstrated improved 
results for building rooftop mapping, outperforming previous 
models, such as the Dual Attention Network (DANet) and 
Asymmetric Neural Network (ANN). In experiments 
comparing two loss functions, Dice Loss (DLs) achieved a 
significantly higher average Intersection over Union (IoU) 
score of 96.8% compared to the 87% obtained with Binary 
Cross Entropy (BCE), confirming the superior effectiveness of 
DLs for this application.  

The integration of U-Net with the Ramer-Douglas-Peucker 
(RDP) algorithm effectively converts the raster-based 
segmentation results into refined vector formats, simplifying 
and enhancing the polygon shapes of segmented rooftops. This 
combination not only ensures high segmentation accuracy, but 
also enhances the practical usability of the output data for 
Geographic Information System (GIS) applications, making it a 
valuable tool in urban planning, infrastructure development, 
and other real-world contexts. 

CONFLICT OF INTEREST 

The authors declare that they have no known conflicts of 
interest that could have appeared to influence the work reported 
in this paper. 

DATA AVAILABILITY OF DATA AND MATERIAL 

The dataset generated during and/or analyzed during the 
current study are available from the corresponding author upon 
reasonable request. 

REFERENCES 

[1] H. He, L. Ma, and J. Li, "HigherNet-DST: Higher-Resolution Network 
With Dynamic Scale Training for Rooftop Delineation," IEEE 
Transactions on Geoscience and Remote Sensing, vol. 62, pp. 1–15, Feb. 
2024, https://doi.org/10.1109/TGRS.2024.3362601. 

[2] K. Sawa, I. Yalcin, and S. Kocaman, "Building Detection from SkySat 
Images with Transfer Learning: a Case Study over Ankara," PFG – 
Journal of Photogrammetry, Remote Sensing and Geoinformation 
Science, vol. 92, no. 2, pp. 163–175, Apr. 2024, https://doi.org/10.1007/ 
s41064-024-00279-x. 

[3] L. I. U. Wentao, L. I. Shihua, and Q. I. N. Yuchu, "Automatic Building 
Roof Extraction with Fully Convolutional Neural Network," Journal of 
Geo-information Science, vol. 20, no. 11, pp. 1562–1570, Nov. 2018, 
https://doi.org/10.12082/dqxxkx.2018.180159. 

[4] H. He et al., "The Impact of Data Volume on Performance of Deep 
Learning Based Building Rooftop Extraction Using Very High Spatial 
Resolution Aerial Images," in 2021 IEEE International Geoscience and 
Remote Sensing Symposium, Brussels, Belgium, 2021, pp. 1343–1346, 
https://doi.org/10.1109/IGARSS47720.2021.9553422. 

[5] J. Yang, B. Matsushita, and H. Zhang, "Improving building rooftop 
segmentation accuracy through the optimization of UNet basic elements 
and image foreground-background balance," ISPRS Journal of 
Photogrammetry and Remote Sensing, vol. 201, pp. 123–137, Jul. 2023, 
https://doi.org/10.1016/j.isprsjprs.2023.05.013. 

[6] I. García-Aguilar, J. Galeano-Brajones, F. Luna-Valero, J. Carmona-
Murillo, J. D. Fernández-Rodríguez, and R. M. Luque-Baena, 
"Prediction of Optimal Locations for 5G Base Stations in Urban 
Environments Using Neural Networks and Satellite Image Analysis," in 
Bioinspired Systems for Translational Applications: From Robotics to 
Social Engineering: 10th International Work-Conference on the 
Interplay Between Natural and Artificial Computation,Proceedings, Part 
II, Olhâo, Portugal, 2024, pp. 33–43, https://doi.org/10.1007/978-3-031-
61137-7_4. 

[7] G. Li et al., "A district-scale spatial distribution evaluation method of 
rooftop solar energy potential based on deep learning," Solar Energy, 
vol. 268, Jan. 2024, Art. no. 112282, https://doi.org/10.1016/j.solener. 
2023.112282. 

[8] M. Cermak and V. Skala, "Edge spinning algorithm for implicit 
surfaces," Applied Numerical Mathematics, vol. 49, no. 3–4, pp. 331–
342, Jun. 2004, https://doi.org/10.1016/j.apnum.2003.12.011. 

[9] M. Cermak and V. Skala, "Surface Curvature Estimation for Edge 
Spinning Algorithm," in Computational Science - ICCS 2004: 
Proceedings of 4th International Conference on Computational Science, 
Part II, Kraków, Poland, 2004, pp. 412–418, https://doi.org/10.1007/ 
978-3-540-24687-9_52. 

[10] D. Harbinson, R. Balsys, and K. Suffern, "Hybrid Polygon-Point 
Rendering of Singular and Non-Manifold Implicit Surfaces," in 2019 
23rd International Conference in Information Visualization – Part II, 
Adelaide, Australia, 2019, pp. 160–166, https://doi.org/10.1109/IV-
2.2019.00039. 

[11] C. Campoverde, M. Koeva, C. Persello, K. Maslov, W. Jiao, and D. 
Petrova-Antonova, "Automatic Building Roof Plane Extraction in Urban 
Environments for 3D City Modelling Using Remote Sensing Data," 
Remote Sensing, vol. 16, no. 8, Apr. 2024, Art. no. 1386, https://doi.org/ 
10.3390/rs16081386. 

[12] A. Ramalingam, V. Srivastava, S. V. George, S. Alagala, and M. L. 
Manickam, "Building rooftop extraction from aerial imagery using low 
complexity UNet variant models," Journal of Spatial Science, vol. 69, 
no. 3, pp. 773–800, Jul. 2024, https://doi.org/10.1080/14498596.2024. 
2302166. 

[13] M. D. Hossain and D. Chen, "Performance Comparison of Deep 
Learning (DL)-Based Tabular Models for Building Mapping Using 
High-Resolution Red, Green, and Blue Imagery and the Geographic 
Object-Based Image Analysis Framework," Remote Sensing, vol. 16, no. 
5, Mar. 2024, Art. no. 878, https://doi.org/10.3390/rs16050878. 

[14] H. Ni et al., "Enhancing rooftop solar energy potential evaluation in 
high-density cities: A Deep Learning and GIS based approach," Energy 
and Buildings, vol. 309, Apr. 2024, Art. no. 113743, https://doi.org/ 
10.1016/j.enbuild.2023.113743. 

[15] X. Han, J. Wang, X. Liu, J. Du, X. Bai, and R. Ji, "PromptNet: Prompt 
Learning for Roof Photovoltaic Potential Assessment," Journal of 
Physics: Conference Series, vol. 2755, no. 1, May 2024, Art. no. 
012042, https://doi.org/10.1088/1742-6596/2755/1/012042. 

[16] J. Yang, B. Matsushita, and H. Zhang, "Improving building rooftop 
segmentation accuracy through the optimization of UNet basic elements 
and image foreground-background balance," ISPRS Journal of 
Photogrammetry and Remote Sensing, vol. 201, pp. 123–137, Jul. 2023, 
https://doi.org/10.1016/j.isprsjprs.2023.05.013. 

[17] A. Churi and D. B. Megherbi, "Methods for Predictive Performance 
Improvement of Deep Learning Systems for Aerial Building Roof 
Detection with Multispectral Images," in 2023 IEEE International 
Conference on Computational Intelligence and Virtual Environments for 
Measurement Systems and Applications, Gammarth, Tunisia, 2023, pp. 
1–6, https://doi.org/10.1109/CIVEMSA57781.2023.10231019. 

[18] Z. Liu, H. Tang, L. Feng, and S. Lyu, "China Building Rooftop Area: the 
first multi-annual (2016–2021) and high-resolution (2.5 m) building 
rooftop area dataset in China derived with super-resolution segmentation 



Engineering, Technology & Applied Science Research Vol. 15, No. 2, 2025, 20580-20587 20587  
 

www.etasr.com Irwansyah et al.: Deep Learning with Semantic Segmentation Approach for Building Rooftop Mapping … 

 

from Sentinel-2 imagery," Earth System Science Data, vol. 15, no. 8, pp. 
3547–3572, Aug. 2023, https://doi.org/10.5194/essd-15-3547-2023. 

[19] Z. K. Hussain, J. Congshir, Y. X. Xin, and M. R. e Mustafa, "A 
Comparative Study of PP-LiteSeg, Dual Attention Network, 
DeeplabV3p and Asymmetric Neural Network for Rooftop Detection in 
UAV Images." Preprints, Apr. 10, 2024, https://doi.org/10.20944/ 
preprints202404.0705.v1. 

[20] M. Buyukdemircioglu, R. Can, and S. Kocaman, "Deep Learning Based 
Roof Type Classification using Very High Resolution Aerial Imagery," 
The International Archives of the Photogrammetry, Remote Sensing and 
Spatial Information Sciences, vol. XLIII-B3-2021, pp. 55–60, Jun. 2021, 
https://doi.org/10.5194/isprs-archives-XLIII-B3-2021-55-2021. 

[21] P. Chaweewat, "Solar photovoltaic rooftop detection using satellite 
imagery and deep learning," in 2023 IEEE PES 15th Asia-Pacific Power 
and Energy Engineering Conference, Chiang Mai, Thailand, 2023, pp. 
1–5, https://doi.org/10.1109/APPEEC57400.2023.10561976. 

[22] X. Wang, J. Zhang, and L. You, "A Douglas-Peucker Algorithm 
Combining Node Importance and Radial Distance Constraints," in 2021 
3rd International Conference on Artificial Intelligence and Advanced 
Manufacture, Manchester, United Kingdom, 2021, pp. 265–269, https:// 
doi.org/10.1145/3495018.3495063. 

[23] Jinsong M. A., Jie S., and Shoucheng X. U., "A Parallel Implementation 
of Douglas-Peucker Algorithm for Real-Time Map Generalization of 
Polyline Features on Multi-core Processor Computers," Geomatics and 
Information Science of Wuhan University, vol. 36, no. 12, pp. 1423–
1426, Dec. 2011. 

[24] J. Ma, S. Xu, Y. Pu, and G. Chen, "A real-time parallel implementation 
of Douglas-Peucker polyline simplification algorithm on shared memory 
multi-core processor computers," in 2010 International Conference on 
Computer Application and System Modeling, Taiyuan, China, 2010, pp. 
V4-647-V4-652, https://doi.org/10.1109/ICCASM.2010.5620612. 

[25] X. Song, C. Cheng, C. Zhou, and D. Zhu, "Gestalt-Based Douglas-
Peucker Algorithm to Keep Shape Similarity and Area Consistency of 
Polygons," Sensor Letters, vol. 11, no. 6–7, pp. 1015–1021, Jun. 2013, 
https://doi.org/10.1166/sl.2013.2895. 

[26] Z. Xie, H. Wang, and L. Wu, "The improved Douglas-Peucker algorithm 
based on the contour character," in 2011 19th International Conference 
on Geoinformatics, Shanghai, China, 2011, pp. 1–5, https://doi.org/ 
10.1109/GeoInformatics.2011.5981173. 

[27] D. H. Douglas and T. K. Peucker, "Algorithms for the reduction of the 
number of points required to represent a digitized line or its caricature," 
Cartographica, vol. 10, no. 2, pp. 112–122, Dec. 1973, https://doi.org/ 
10.3138/FM57-6770-U75U-7727. 

[28] D. Patil and S. Jadhav, "Road Segmentation in High-Resolution Images 
Using Deep Residual Networks," Engineering, Technology & Applied 
Science Research, vol. 12, no. 6, pp. 9654–9660, Dec. 2022, https:// 
doi.org/10.48084/etasr.5247. 


