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ABSTRACT 

This study focuses on stroke prediction using machine learning algorithms and evaluates the impact of 

different resampling techniques, including original, under-sampling, and over-sampling, on classification 

performance. The classifiers used in this study include Random Forest (RF), Decision Tree (DT), Gradient 

Boosting (GB), and K-Nearest Neighbor (KNN). Each model was trained and evaluated using performance 

metrics such as accuracy, precision, recall, F1-score, and AUC. The results demonstrate that RF trained on 

the oversampled dataset achieved the best performance with an accuracy of 94.31%, a precision of 

93.52%, a recall of 95.27%, an F1-score of 94.39%, and an AUC of 98.46% on the test set. These findings 

highlight the effectiveness of oversampling in handling imbalanced datasets and the superiority of RF in 

stroke prediction tasks compared to other classification methods and resampling techniques. 

Keywords-machine learning; stroke classification; resampling 
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I. INTRODUCTION  

Stroke is a medical condition that occurs when blood flow 
to a part of the brain is stopped or significantly reduced, 
resulting in damage to brain tissue [1]. This disruption can be 
due to blockage (ischemic stroke) or rupture of a blood vessel 
(hemorrhagic stroke), which causes the affected area of the 
brain to lose oxygen and essential nutrients [2]. Stroke 
symptoms often appear suddenly and include weakness or 
numbness in the limbs, confusion or difficulty speaking and 
understanding speech, visual disturbances in one or both eyes, 
and severe headaches that appear suddenly for no apparent 
reason [3]. As stroke is a leading cause of disability and death 
worldwide, awareness of early signs and the importance of 
receiving medical treatment as soon as possible is crucial [4]. 
Stroke prevention efforts involve controlling risk factors [5]. 
Increasing knowledge about strokes, both in terms of 
prevention and treatment, is an essential step in reducing their 
impact [6]. 

Disease identification using Machine Learning (ML) 
technology has become one of the innovative approaches in the 
early detection of various medical conditions [7]. In this 
context, ML algorithms can be trained to recognize complex 
patterns in medical data, such as patient medical history, food 
and beverage consumption habits, physical movement habits, 
etc. [8]. Through extensive data analysis, machine learning 
algorithms accurately identify early stroke indicators before 
clinical symptoms appear [9]. Similarly, for chronic diseases, 
ML models can predict a person's risk based on a combination 
of risk factors that influence the occurrence of a stroke. ML has 
the potential to be an invaluable tool in the healthcare system, 
enabling faster and more targeted interventions, which can 
ultimately save lives and improve patient quality of life [10]. 

This study uses four classification algorithms, Gradient 
Boosting (GB), K-Nearest Neighbors (KNN), Decision Tree 
(DT), and Random Forest (RF), to evaluate their performance 
in early stroke detection. GB is known for improving model 
accuracy by combining weak learners into a strong ensemble, 
effectively handling complex data patterns [11]. KNN is a 
simple but powerful algorithm that makes decisions based on 
the proximity of data points in the feature space. However, its 
performance can be affected by large datasets and high 
dimensionality [12]. The DT algorithm provides an intuitive 
structure by splitting data based on decision rules, although it 
can sometimes overfit [13]. RF addresses this limitation by 
building an ensemble of decision trees, reducing the risk of 
overfitting and improving prediction accuracy through 
aggregation [14]. Comparing these four algorithms allows 
research to compare the strengths and weaknesses of different 
approaches, ensuring that the most accurate and practical 
model is selected for early disease detection. 

This study aimed to develop an effective ML pipeline for 
predicting stroke likelihood using data preprocessing, feature 
selection, and model evaluation techniques. The method begins 
with data cleaning, including handling missing values, 
encoding categorical features, and balancing the dataset using 
Random Undersampling (RUS) and Synthetic Minority Over-
sampling Technique (SMOTE) techniques. Exploratory Data 

Analysis (EDA) is performed to understand the data, followed 
by correlation analysis to identify essential features. The data 
are then normalized and divided into training, validation, and 
testing sets. Four machine learning models, GB, KNN, DT, and 
RF, are trained and evaluated using various performance 
metrics, including accuracy, precision, recall, F1-score, and 
ROC-AUC. Results are compared in original, undersampled, 
and over-sampled datasets to determine the most accurate and 
effective model for stroke prediction. 

In [15], an explainable ML pipeline was proposed to predict 
stroke occurrences using imbalanced data. This study aimed to 
create reliable models, address class imbalance, and interpret 
the model output. Six classifiers were compared, finding that 
Multi-Layer Perceptron (MLP) was the most effective, 
achieving an accuracy of 70.85% and a false-negative rate of 
18.60%. Shapley Additive Explanations (SHAP) were used to 
understand the impact of various risk factors on predictions. 
The study concluded that age, BMI, and average glucose level 
were the most significant predictors, and the proposed method 
could enhance risk stratification and timely diagnosis for stroke 
patients. In [16], an automated stroke prediction system using 
ML was presented to enhance early intervention and reduce 
stroke-related disabilities and mortality. This study compared 
six classifiers, with more complex models achieving up to 91% 
accuracy. SHAP and LIME techniques were applied to explain 
the models' decisions, ensuring transparency and trust in 
medical applications. The study also addressed class imbalance 
issues and proposed a web-based application for real-time 
stroke prediction, emphasizing the importance of Explainable 
AI (XAI) in healthcare. 

In [17], an XAI model was introduced to predict strokes 
using EEG signals. ML models were used to classify patients 
with ischemic stroke and healthy individuals, achieving around 
80% accuracy with Adaptive Gradient Boosting (AGB). The 
Eli5 and LIME tools were employed to explain the model's 
behavior and identify significant features contributing to stroke 
prediction, such as spectral delta and theta waves. The study 
involved 48 stroke patients and 75 healthy adults, with EEG 
data collected during activities such as walking and reading. 
The findings aimed to improve post-stroke treatment and 
recovery by making diagnostic decisions more explainable to 
healthcare professionals. In [18], distributed ML on Apache 
Spark was investigated for stroke prediction. This study 
compared four machine learning algorithms: DT, SVM, RF, 
and Logistic Regression (LR). Data preprocessing, 
hyperparameter tuning, and cross-validation were applied to 
enhance the models' performance. The results showed that RF 
achieved the highest accuracy at 90%, demonstrating its 
effectiveness in predicting strokes. This study highlighted the 
importance of early stroke prediction for improving patient 
outcomes and reducing long-term disabilities.  

In [19], various Electronic Health Record (EHR) factors 
were analyzed to predict stroke using ML and neural networks. 
Age, heart disease, average glucose level, and hypertension 
were identified as the most critical factors for stroke prediction. 
This study used principal component analysis to reduce the 
feature space. Several ML models were combined, finding that 
a perceptron neural network with these four critical attributes 
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provided the highest accuracy. The highly imbalanced dataset 
was balanced using subsampling techniques to ensure reliable 
results. This study concluded that focusing on these four 
attributes could significantly improve stroke prediction, 
achieving an accuracy of 92%. 

Existing research on stroke prediction using ML has 
focused primarily on addressing class imbalance and improving 
model accuracy. However, these studies did not 
comprehensively compare different resampling techniques, 
such as undersampling, oversampling, and the original dataset. 
Most studies, such as [15, 18], evaluated specific classifiers 
without exploring how various resampling methods affect a 
broader set of models. Additionally, comprehensive evaluation 
metrics are limited beyond accuracy, and the interaction of data 
preprocessing steps with resampling techniques remains 

underexplored. Furthermore, these studies often fail to validate 
models across diverse datasets, raising concerns about the 
generalizability of their findings. 

This research contributes to the field by systematically 
comparing the impact of different resampling methods on 
stroke prediction models. This evaluates a diverse set of 
classifiers using comprehensive evaluation metrics, providing a 
more holistic assessment. This study also integrates key 
preprocessing steps, such as feature selection and data 
normalization, analyzing their combined effects with 
resampling techniques to enhance model performance. 
Additionally, it ensures robust validation through cross-
validation, addressing the generalizability concerns often 
overlooked in existing research. 

TABLE I.  STROKE CLASSIFICATION DATA SAMPLE  

No Class BMI Smoking … Sex AgeCategory GenHealth Sleeptime 

1 No 16.60 Yes … Female 55-59 Very Good 5 

2 No 20.34 No … Female 80 or older Very Good 7 

3 No 26.58 Yes … Male 65-69 Fair 8 

4 No 24.21 No … Female 75-79 Good 6 

5 No 23.71 No … Female 40-44 Very Good 8 

… … … … … … … … … 

319790 Yes 27.41 Yes … Male 60-64 Fair 6 

319791 No 29.84 Yes … Male 35-39 Very Good 5 

319792 No 24.24 No … Female 45-49 Good 6 

319793 No 32.81 No … Female 25-29 Good 12 

319794 No 46.56 No … Female 80 or older Good 8 

 

II. PROPOSED METHOD 

A. Dataset 

The dataset [20] has several features that support stroke 
prediction, including demographic information, such as age and 
gender, medical history, such as hypertension and heart 
disease, lifestyle factors, including smoking status, and other 
relevant attributes. The prediction target in this dataset is the 
stroke column with two unique values: "Yes" or "No. The data 
distribution in this dataset consists of 289,653 data with the 
"No" label and 12064 data with the "Yes" label. Table I 
presents a sample of the dataset.  

B. Exploratory Data Analysis (EDA) 

The initial step in the proposed method involved data 
loading and EDA, which provides insights into the data 
distribution and relationships between features, guiding the 
feature selection and data transformation processes. The dataset 
used was loaded using the pd.read_csv() function from the 
pandas library. The distribution of the target variable was 
assessed using a pie chart. Understanding the class distribution 
is crucial, especially for imbalanced datasets, as it directly 
influences the choice of resampling methods. Figure 2 presents 
the distribution of the target variable. 

 
 

Fig. 1.  The research flow diagram. 
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Fig. 2.  Target variable distribution. 

C. Data Preprocessing 

The dataset comprises numerical and categorical features, 
necessitating various preprocessing steps to ensure the data is 
in a suitable format for modeling. Categorical features are 
transformed into numerical representations using 
LabelEncoder() from scikit-learn. Label encoding converts 
categories into numerical labels ranging from 0  to � � 1 , 
where � is the number of unique categories in the feature [21]. 
This transformation is crucial for algorithms that require 
numerical input. Missing values in the dataset can introduce 
biases or inaccuracies in the model [22]. To address this, 
missing values were replaced with the mean of each column 
using the df.fillna(df.mean()) method. This approach assumes 
that the missing values are missing at random and replaces 
them with the average, preserving the overall distribution. 
Duplicate rows, which can lead to overfitting, were removed 
using df.drop_duplicates(). Removing duplicates ensures that 
the dataset's variability is accurately captured and the model's 
performance reflects true predictive ability rather than 
redundancy [23]. 

����	
�
 � �
�������������   (1) 

�������
 � � ∪ �mean����   (2) 

Data balancing techniques address the class imbalance 
commonly observed in stroke prediction datasets, where non-
stroke cases far outnumber stroke cases. Random 
Undersampling (RUS) balances the dataset by reducing the 
number of samples in the majority class [24]. This technique 
involves randomly selecting a subset of the majority class such 
that its size matches that of the minority class. Although this 
method can lead to information loss, it helps prevent the model 
from being biased toward the majority class. The Synthetic 
Minority Over-sampling Technique (SMOTE) generates 
synthetic samples for the minority class [25]. SMOTE creates 
new instances by interpolating between existing minority class 
instances, enhancing it without replicating samples and 
improving the model's generalization ability. 

�	 �!"#��$�
 � ����	!��% & ' ⋅ )����*+,	! � ����	!��%- 

      (3) 

where ' is a random number between 0 and 1, and ����*+,	!  is 

a randomly selected minority class instance. 

Feature selection was performed to identify the most 
relevant features for stroke prediction, enhancing the model's 
efficiency and interpretability [26]. The Pearson correlation 

coefficient evaluates the linear relationship between features 
and the target variable. The correlation coefficient is given by: 

ρ��, 0� � ∑�2324��5354�

6∑�2324�7 ∑�5354�7   (4) 

Features with the highest absolute correlation with the 
target variable were selected, as they were expected to 
contribute most significantly to the model's predictive power. 
The top five features with the highest absolute correlation with 
the target variable were selected for model training. This 
selection was based on their potential to improve model 
accuracy and reduce computational complexity. 

Data normalization was applied to standardize the feature 
values, ensuring that each feature contributes equally to the 
model's performance [27]. StandardScaler was employed to 
scale features to have zero mean and unit variance. This 
normalization is crucial for algorithms sensitive to the scale of 
input features, such as gradient-based models. 

8��, 0� � ∑�2324��5354�

6∑�2324�7 ∑�5354�7   (5) 

where 9  is the mean and :  is the standard deviation of the 
feature. 

D. Classification Modelling 

The dataset was split into training, testing, and validation 
sets using the train_test_split() function to evaluate the models' 
performance. Data were split into training (60%), testing (20%) 
and validation (20%) sets using random seed (random_state = 
42) to ensure reproducibility. The training set was used for 
model training, while the testing set was reserved for 
evaluating the model's generalization performance. The 
validation set ensures that the models are evaluated on unseen 
data, providing an unbiased performance estimate [28]. Four 
classification models were selected to compare their 
performance on the original, undersampled, and oversampled 
datasets. These models include RF, KNN, GB, and DT, each 
offering unique strengths in handling classification tasks. 

���!#��, ���"� , ;�!#�� , ;��"�� � train_test_split��, ;, test_size �
0.2, random_state � 42�    (6) 

The models were initialized using their respective default 
parameters. This initialization serves as a baseline for 
evaluating the impact of data resampling on predictive 
performance. Each model was trained on the training data 
using the fit() method. Training involves learning patterns from 
the data to predict unseen data. After training, the models were 
tested on the testing set using the predict() method. The 
predictions were compared against the actual values to assess 
the performance of the models. 

Model�!#��  � � Model.fit���!#��, ;�!#��� 
 (7) 

; ̂ � Model.predict����"��   (8) 

E. Performance Evaluation 

The evaluation stage involved calculating various metrics to 
compare the performance of the models trained on the original, 
undersampled, and oversampled datasets [29]. The 
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performance of each model was evaluated using accuracy, 
precision, recall, F1-score, and confusion matrices. These 
metrics provide a comprehensive view of the model's ability to 
classify stroke and non-stroke cases correctly. Accuracy 
measures the proportion of correctly classified instances among 
the total instances. Precision measures the proportion of true 
positive predictions among all positive predictions. Recall 
measures the proportion of true positive predictions among all 
actual positives. F1-score is the harmonic mean of precision 
and recall, balancing the two metrics. 

A��B�
�; � CDECF
CDECFEGDEGF

   (9) 

H���IJI�� � CD
CDEGD

    (10) 

K��
�� � CD
CDEGF

    (11) 

L1 − J���� = 2 ×
D!���"�	�×N��#$$

D!���"�	�EN��#$$
   (12) 

The confusion matrix summarizes the model's performance 
by displaying true positives, true negatives, false positives, and 
false negatives. The Receiver Operating Characteristic (ROC) 
curve plots the true positive rate against the false positive rate 
at various threshold settings. The Area Under the Curve (AUC) 
quantifies the model's ability to distinguish between classes, 
with higher values indicating better performance. 

AUC = O ROC�P�
Q

R
 �P    (13) 

III. RESULTS AND ANALYSIS 

A. Performance Evaluation of the Models on the Original 
Dataset 

The initial evaluation was conducted on the original 
imbalanced dataset, where the models were trained and tested 
without resampling. The results, summarized in Table II, 
indicate the baseline performance of each classifier. 
Performance metrics provide a reference point to compare the 
effects of resampling. 

TABLE II.  MODELS' PERFORMANCE ON THE ORIGINAL 
DATASET  

Classifier Accuracy Precision Recall F1-score AUC 

GB (Test) 96.02% 68.42% 00.54% 01.07% 81.48% 

GB (Val) 96.04% 45.83% 00.46% 00.91% 82.06% 

KNN (Test) 95.84% 21.18% 01.49% 02.79% 59.18% 

KNN (Val) 95.85% 16.57% 01.17% 02.19% 59.84% 

DT (Test) 92.32% 11.21% 13.31% 12.17% 54.43% 

DT (Val) 92.38% 11.66% 14.06% 12.75% 54.86% 

RF (Test) 95.80% 11.58% 00.79% 01.48% 75.74% 

RF (Val) 95.84% 10.97% 00.71% 01.34% 76.61% 

 
GB outperformed the other models in terms of accuracy 

(96.02% on test and 96.04% on validation) and AUC (81.48% 
on test and 82.06% on validation), suggesting that it had the 
best balance between correctly predicting both cases. However, 
it exhibited extremely low precision, recall, and F1 scores 
across both sets, indicating that although overall prediction 
accuracy is high, the model struggled significantly in correctly 
identifying stroke cases, as reflected in low-performance 
metrics for positive class predictions. 

KNN shows comparable accuracy to GB (95.84% on test) 
but with drastically lower precision, recall, and F1-scores, 
indicating poor performance in detecting stroke cases. DT had 
the lowest accuracy (92.32% on test), and its performance 
metrics were similarly low, demonstrating inadequate model 
performance. RF performed slightly better than DT in accuracy 
(95.80% on test) and AUC but still suffered from very low 
precision, recall, and F1 scores, highlighting a consistent 
pattern across all models where high accuracy does not 
translate to reliable detection of stroke cases. Despite their high 
accuracy, these models may not be effective for clinical use 
due to their poor ability to correctly identify positive cases, as 
reflected in the other metrics. 

The results in Table II underscore a notable disparity 
between the overall accuracy of the classifiers and their ability 
to effectively identify stroke cases, as evidenced by their low 
precision, recall, and F1 scores. This suggests that the models, 
particularly GB and KNN, achieve high accuracy largely due to 
correct predictions of the dominant class, rather than a robust 
ability to differentiate between positive and negative cases. 
This imbalance may stem from the class imbalance in the 
dataset or suboptimal feature representation for positive cases. 

B. Performance Evaluation on the Undersampled Dataset 

This section evaluates the models trained on the 
undersampled dataset, where the amount of data rows changed 
to 24,128 (the original amount was 30,1717). RUS was used to 
balance the class distribution by reducing the number of 
samples in the majority class. As shown in Table III, 
undersampling generally improved the recall rates across all 
classifiers, indicating a better balance in correctly identifying 
stroke cases, although often at the cost of reduced accuracy. 

TABLE III.  MODELS' PERFORMANCE ON THE 
UNDERSAMPLED DATASET  

Classifier Accuracy Precision Recall F1-score AUC 

GB (Test) 75.49% 73.83% 80.13% 76.85% 82.84% 

GB (Val) 74.57% 71.67% 78.96% 75.14% 82.72% 

KNN (Test) 69.62% 70.72% 68.58% 69.63% 74.03% 

KNN (Val) 68.52% 67.62% 67.76% 67.69% 74.07% 

DT (Test) 65.46% 66.00% 65.97% 65.99% 65.46% 

DT (Val) 65.64% 64.42% 65.63% 65.02% 65.64% 

RF (Test) 73.77% 72.47% 77.97% 75.12% 80.55% 

RF (Val) 73.60% 70.94% 77.47% 74.06% 79.91% 

 
GB achieved the highest accuracy (75.49% on test and 

74.57% on validation) and F1 score (76.85% on test and 
75.14% on validation), indicating a solid overall performance 
with a good balance between precision and recall. Its AUC 
values (82.84% on test and 82.72% on validation) further 
confirm its effective discrimination between classes. RF also 
performed well, with accuracy close to GB (73.77% on test and 
73.60% on validation) and substantial precision, recall, and F1 
scores, although slightly lower than GB, making it a robust 
alternative. KNN had a moderate performance with accuracy 
around 69-70%, showing a decent balance between precision 
and recall but lower AUC (~74%), indicating less reliable 
classification than the top models. DT had the lowest accuracy 
(~65-66%) and F1 scores, reflecting the weakest performance 
among the classifiers. Overall, GB and RF emerged as the top 
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performers on the undersampled dataset, offering a good trade-
off between precision and recall, making them more suitable 
for balanced predictions than the other models. 

The results in Table III reveal how undersampling the 
dataset significantly alters the performance dynamics of the 
classifiers. Unlike the models trained on the original dataset, 
where accuracy dominated as the primary indicator of success, 
the undersampled dataset allowed the evaluation metrics to 
shift focus toward a balance between precision and recall. This 
adjustment is particularly critical in contexts where the accurate 
identification of positive cases (stroke) is paramount. Although 
the models sacrifice some accuracy compared to their 
performance on the original data, they gain significant 
improvements in metrics directly tied to identifying stroke 
cases, such as precision, recall, and F1-score. 

C. Performance Evaluation on the Oversampled Dataset 

This experiment applied the oversampling method to the 
original dataset to obtain better results. The number of data 
rows changed to 579,306 (the original amount was 301,717). 
This section evaluates models trained on the oversampled 
dataset, where SMOTE was applied. SMOTE generates 
synthetic samples to balance the class distribution. As detailed 
in Table IV, oversampling improved both recall and F1-score 
significantly, especially for classifiers such as GB and RF, 
demonstrating that SMOTE effectively mitigated the effects of 
class imbalance. 

TABLE IV.  PERFORMANCE METRICS OF MODELS TRAINED 
ON OVERSAMPLED DATASET  

Classifier Accuracy Precision Recall F1-score AUC 

GB (Test) 82.65% 83.59% 81.41% 82.48% 91.63% 

GB (Val) 82.92% 83.81% 81.61% 82.69% 91.83% 

KNN (Test) 87.24% 80.79% 97.84% 88.50% 94.58% 

KNN (Val) 87.17% 80.61% 97.89% 88.41% 94.71% 

DT (Test) 91.35% 89.92% 93.21% 91.54% 91.36% 

DT (Val) 91.25% 89.78% 93.10% 91.41% 91.27% 

RF (Test) 94.31% 93.52% 95.27% 94.39% 98.46% 

RF (Val) 94.40% 93.60% 95.31% 94.45% 98.48% 

 

RF outperformed had the highest accuracy (94.31% on test 
and 94.40% on validation) and an outstanding AUC (98.46% 
on test and 98.48% on validation), indicating excellent 
performance and a solid ability to distinguish between classes. 
On the test dataset, its high precision (93.52%), recall 
(95.27%), and F1 score (94.39%) reflect a balanced and 
reliable prediction of both positive and negative cases. DT also 
performed well, achieving high accuracy (91.35% on test and 
91.25% on validation) with balanced precision, recall, and F1 
scores (~91-93%), making it practical for accurate and 
consistent predictions. KNN showed slightly lower accuracy 
(87.24% on test and 87.17% on validation) but excelled in 
recall (97.84% on test), suggesting a solid sensitivity in 
identifying positive cases, though at the expense of slightly 
lower precision. GB performed moderately with an accuracy of 
82-83% and an AUC of 91.6-91.8%, indicating decent but less 
robust performance compared to RF and DT. Overall, RF was 
the top performer with the most balanced and high metrics, 
making it the most suitable for datasets that have been 
oversampled to address class imbalance. The results in Table 
IV highlight how oversampling transforms the performance of 
classifiers, improving their ability to identify and balance 
between classes. This preprocessing technique amplifies the 
recall across most models, ensuring they are more sensitive to 
detecting positive cases without significantly compromising 
precision. The overall effect is a noticeable improvement in F1 
score and AUC values compared to the original and 
undersampled datasets, making the models more viable for 
practical applications. The enhancements across all models 
underscore the importance of addressing class imbalance to 
achieve reliable and fair predictions. 

D. Comparative Analysis of Resampling Techniques 

This section compares the different resampling techniques 
(original, undersampling, and oversampling) across all 
classifiers. Table V consolidates the results to highlight each 
approach's performance trends and trade-offs. The comparative 
analysis shows that oversampling generally led to better overall 
performance, especially regarding recall and F1-score, which 
are crucial in medical diagnostics. 

TABLE V.  PERFORMANCE METRICS UNDER EACH RESAMPLING METHOD  

Dataset Classifier Accuracy Precision Recall F1-score AUC 

Original GB (Test) 96.02% 68.42% 00.54% 01.07% 81.48% 

Original GB (Val) 96.04% 45.83% 00.46% 00.91% 82.06% 

Undersampled KNN (Test) 75.49% 73.83% 80.13% 76.85% 82.84% 

Undersampled KNN (Val) 74.57% 71.67% 78.96% 75.14% 82.72% 

Oversampled DT (Test) 94.31% 93.52% 95.27% 94.39% 98.46% 

Oversampled DT (Val) 94.40% 93.60% 95.31% 94.45% 98.48% 

 
For the original dataset, GB showed high accuracy (96.02% 

on test and 96.04% on validation) but inferior precision, recall, 
and F1-scores (all near zero), indicating that despite the high 
accuracy, the model fails to identify positive cases effectively, 
making it unreliable for practical use. When trained on the 
undersampled dataset, GB demonstrated more balanced 
performance, with reduced accuracy (75.49% on test and 
74.57% on validation) but significantly improved precision 
(around 73-74%), recall (around 80%), and F1 (around 76-
75%) scores. This suggests that undersampling helps the model 
better capture the minority class, though at the cost of overall 

accuracy. For the oversampled dataset, RF achieved the best 
overall performance, with high accuracy (94.31% on test and 
94.40% on validation) and excellent precision, recall, and F1-
scores (all above 93%), alongside an impressive AUC (98.46% 
on test and 98.48% on validation). This indicates that 
oversampling effectively addresses class imbalance, allowing 
the RF model to maintain high predictive power across both 
classes. Thus, combined with RF, oversampling provides the 
most reliable and balanced approach for handling imbalanced 
datasets. 
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These results show that the choice of resampling method 
significantly influences the classifiers' performance. The results 
demonstrate how different approaches to addressing class 
imbalance can either enhance or hinder a model's ability to 
identify positive cases effectively, depending on the context. 
When comparing the three approaches, oversampling emerges 
as the most effective method to create a balanced and reliable 
classifier. Although undersampling provides a pathway to 
improve sensitivity at the cost of accuracy, oversampling 
preserves high accuracy while addressing the limitations seen 
with the original dataset. This balance is crucial in practical 
applications where both overall predictive reliability and 
sensitivity to minority classes are necessary. Ultimately, the 
results in Table V reinforce the importance of resampling 
methods in ML workflows. The stark differences in 
performance metrics across datasets demonstrate that class 

imbalance cannot be overlooked, as it significantly impacts a 
model's utility. Among the resampling strategies, oversampling 
with models such as DT or RF appears to offer the most 
comprehensive solution, ensuring both high predictive 
accuracy and sensitivity to the minority class. This insight is 
vital for optimizing ML models for real-world, high-stakes 
applications. 

E. Comparison with the Existing Research 

This section compares the results of this study with 
previous research on similar datasets. The proposed models, 
which utilized DT and RF on oversampled datasets, were 
evaluated against various approaches, including LR, RF, AGB, 
and Neural Networks (NN), applied to stroke classification 
tasks. Table VI presents the comparison between existing 
schemes and the proposed method. 

TABLE VI.  COMPARISON WITH EXISTING SCHEMES IN STROKE CLASSIFICATION 

Scheme Best model Accuracy Precision Recall F1-score AUC 

[15] LR 73.52% - 78.12% - 83.30% 

[16] RF 90.36% 91.5% 91.25% 90.5% - 

[17] AGB 80% 82% 78% 80% 80% 

[18] RF 90% 91.5% 90.5% 90.5% - 

[19] NN 78% 78% 71% 74% - 

Proposed 

method 

DT (Test) 91.35% 89.92% 93.21% 91.54% 91.36% 

DT (Val) 91.25% 89.78% 93.10% 91.41% 91.27% 

RF (Test) 94.31% 93.52% 95.27% 94.39% 98.46% 

RF (Val) 94.40% 93.60% 95.31% 94.45% 98.48% 

 
LR in [15] achieved lower accuracy (73.52%) and recall 

(78.12%), indicating less reliable performance in classifying 
positive cases. RF in [16, 18] achieved accuracies of ~90% 
with high precision, yet it fell short compared to the proposed 
method's performance, especially in recall and F1-score. The 
AGB model in [18] achieved balanced but lower metrics (80% 
accuracy, 82% precision), highlighting that, although it 
provided consistency, it did not reach the predictive power of 
the proposed RF method. The NN in [19] showed the lowest 
performance among these studies, with an accuracy of 78% and 
a recall of 71%, underscoring the challenges that NNs face in 
this classification task without substantial data preprocessing. 

This comparison highlights the effectiveness of the 
proposed RF model trained on oversampled data, which 
consistently outperformed existing methods in accuracy, 
precision, recall, and AUC. By addressing class imbalance 
through oversampling, the proposed approach enhances the 
model's reliability and applicability in medical diagnostics, 
offering a clear improvement over previously reported 
techniques. This demonstrates the value of combining robust 
classifiers with appropriate data resampling techniques to 
achieve optimal performance in critical classification tasks. The 
proposed RF approach with oversampling achieved not only 
the highest accuracy (94.31% on the test set and 94.40% on the 
validation set) but also excelled in recall (95.27%), F1-score 
(94.39%), and AUC (98.46%). These metrics indicate a finely 
tuned model capable of effectively balancing precision and 
recall while minimizing false positives and false negatives. 
Such performance is critical in medical diagnostics, where 
misclassifications can have significant consequences. 

IV. CONCLUSION 

This study systematically compared the performance of 
various machine learning classifiers, including RF, DT, GB, 
and KNN, on stroke prediction, employing different resampling 
methods. The results indicate that the oversampling technique 
combined with RF achieved the highest accuracy of 94.31%, 
with an AUC of 98.46%, demonstrating its superior ability to 
balance precision and recall. Models trained on the original and 
undersampled datasets generally performed less effectively, 
particularly regarding recall and F1-score. These findings 
underscore the importance of addressing the class imbalance in 
medical datasets and suggest that RF with oversampling is the 
most reliable approach for stroke prediction. Future work could 
explore the use of additional ensemble methods and deep 
learning techniques to further enhance model performance and 
generalizability. 
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