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ABSTRACT 

With the rapid expansion of data applications, particularly in large and complex graph structures, 

effective visualization and analysis tools are essential. This paper addresses the "Hair Ball" problem, 

where excessive node and edge intersections hinder the clear interpretation of networks. To mitigate this 

issue, an efficient algorithm based on the K3,4 bipartite graph model is proposed. The model is 

systematically compressed to reduce intersecting edges while preserving essential structural relationships. 

The algorithm was tested on various datasets, ranging from small synthetic networks to large real-world 

graphs. The results demonstrate significant reductions in visual complexity and improved clarity. Key 

performance metrics, including edge density reduction and observer feedback, validate the scalability and 

practical applicability of the proposed approach in big data environments. By simplifying intricate graph 

structures, this method offers a versatile and effective solution for applications in network analysis, data 

visualization, and related fields. 

Keywords-big data visualization; hair ball problem; graph simplification; K3,4 bipartite model; network 

clarity; data visualization algorithm 

I. INTRODUCTION  

Data visualization involves representing massive and 
intricate datasets, often associated with fields, like data science, 
networking, and big data [1]. However, as graphs grow in 
complexity -whether due to the addition of more data or an 
increased number of nodes- traditional visualization techniques 
become inefficient. This inefficiency is particularly evident in 
the "Hair Ball" problem, where large graph structures become 
visually cluttered [2]. In such cases, overlapping nodes and 
edges obscure the underlying patterns, making it challenging to 
derive meaningful insights [3]. The graph structures represent 
data and their associated relationships, but their inherent 
complexity often leads to severe "crossover" issues, where 
intersecting edges cause confusion. This overlap can distort the 
perceived locality of nodes and connections, leading observers 
to mistakenly infer non-existent nodes or relationships [4]. 
Given the increasing demand for effective data visualization, 
mitigating the Hair Ball problem is both timely and essential.  

To address these challenges, the current study focuses on 
the "Hair Ball" issue analyzing enhanced algorithms, placing 
emphasis on outstanding visualization. By studying graph 
forms and specifications, like the K3,4 bipartite model, this 
work seeks to simplify large, complex graphs without 
compromising critical information. Building on existing 
methods, certain improvements to clustering and compression 

processes are proposed, leveraging tools, like R and Gephi, for 
implementation and validation. The ultimate goal is to produce 
"neat" graphs that facilitate easier interpretation and insight 
extraction for observers. 

II. RESEARCH OBJECTIVES 

This work is continuation of previous studies of the same 
author [3, 17] that were focused on K2,3 graphs. The same 
algorithm was used in this paper on a more complete graph, 
which is a complete bipartite graph (three nodes connected 
with four nodes as an indirect graph). The result allows for the 
use of more and more complex graphs (e.g. K4,5, K5,6), which is 
the scope of future work making this research more 
comprehensive and precise compared to the previous 
approaches. The primary aim of this study is to develop an 
algorithm that effectively manages the visual complexity of 
large datasets. To achieve this goal, the specific objectives are: 

 To define the "Hair Ball" by identifying the key challenges 
associated with visualizing high-density graphs. 

 To implement a structured approach leveraging bipartite 
subgraphs as a foundational method for reducing edge 
overlap. 

 To test and evaluate the proposed solution on multiple 
datasets of varying sizes and complexities, ensuring 
scalability and adaptability. 
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III. RESEARCH QUESTIONS AND APPROACH 

This study is guided by the following research questions: 

 What are the primary causes of the "Hair Ball" problem in 
large-scale graph visualization? 

 How can algorithmic methods be utilized to reduce edge 
crossovers in complex data visualizations? 

 To what extent does using bipartite models, particularly the 
K2,3 structure, enhance the interpretability of complex 
graphs? 

IV. APPROACH TO THE PROBLEM 

To address the "Hair Ball" problem, an algorithmic 
approach is adopted that simplifies complex graph structures by 
decomposing them into smaller, more manageable components 
based on the K3,4 bipartite graph model. In this model, two 
nodes are connected to three other nodes, enabling the 
simplification of certain sections of a large graph. When these 
sections are grouped into separate clusters, the overall cross-
density of the edges is significantly reduced [5]. This approach 
aims to retain the essential features of large graphs while 
minimizing the number of intersecting edges, resulting in 
improved readability and interpretability. The proposed 
solution employs R programming and Gephi for graph 
visualization and validation. 

By integrating R and Gephi, this approach facilitates the 
flexible and precise triangulation of distinct graph layouts to 
identify optimal compression strategies. The combination of 
efficient computational methods and advanced visualization 
features provides clear guidance for reducing the excessive 
visual depth in the analyzed datasets. This method ensures that 
the major structural features of large graphs are preserved 
while eliminating unnecessary visual complexity. 

V. TECHNICAL APPROACH AND TOOLS 

A. Algorithmic Strategy 

The primary goal of the algorithmic strategy is to identify 
and simplify K3,4 bipartite subgraphs within complex datasets, 
thereby reducing the graph size and improving readability. This 
process consists of the following key steps: 

 Identifying K3,4 Structures: The first step involves detecting 
K3,4 subgraphs within the main graph. These bipartite 
structures act as manageable units that can be condensed 
without significant loss of information. 

 Compressing Subgraphs: Once K3,4 subgraphs are 
identified, they are compressed into single contracted 
structures  that require a single node. This reduces the total 
number of edges and decreases the edge crossovers, as 
shown in Figure 1. 

 Re-evaluating Graph Structure: After compression, the 
modified graph is analyzed to assess its clarity and 
determine whether additional adjustments are needed. This 
step may include further refinements to minimize the edge 
crossings and enhance the overall visualization quality [6]. 

B. Software Tools 

This study leverages the following software tools to 
implement and evaluate the proposed methodology: 

 R Programming: R is used for data preparation and the 
implementation of algorithms. Its built-in support for 
handling complex data structures and interfaces, along with 
its extensive library of network analysis packages, makes it 
a highly functional tool for this study [7]. 

 Gephi: Gephi is a powerful framework for network 
visualization that complements R by specializing in real-
time analysis of large networks. In addition to aiding 
visualization and the manual examination of the results, 
Gephi is particularly useful during the tuning stage. It 
enables users to observe how graph clarity evolves as 
different algorithms are applied [8]. 

These tools form a robust and adaptable foundation for the 
proposed workflow, ensuring that the methodology can be 
effectively applied across datasets of various sizes and 
complexities. 

 

 
Fig. 1.  The proposed algorithm. 

VI. EXPERIMENTAL DESIGN 

A. Dataset 

To thoroughly evaluate the scalability and flexibility of the 
proposed algorithm, a diverse range of test data was created, 
varying in size, complexity, and structural characteristics. 
These datasets, manually constructed in CSV format, include 
both small and large structures to ensure robust testing across 
different scenarios and to provide a reliable assessment of the 
algorithm's performance.  

These data were created manually on a CSV file. We 
employed a broad dataset with examples with tiny and 
significant structures, such as tiny datasets with 15 rows and 
two columns, which has highly defined small-scale geometries, 
and a big dataset with 100 rows and two columns, 
distinguished by intricate large-scale structures. These datasets 
guarantee reliable testing across various setups and can 
accurately show the effectiveness of the proposed approach. 

The small datasets consist of 15 rows and two columns, 
featuring well-defined, small-scale geometries. These datasets 
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focus exclusively on nodes and edges, allowing for a precise 
evaluation of the algorithm’s performance in integrating K3,4 

clusters [9]. Some of these small datasets were designed to 
include one or more K3,4 structures, facilitating an analysis of 
the compression process and the algorithm's ability to minimize 
the undesirable artifacts while preserving graph clarity [10]. 

In contrast, the large datasets contain over 100 rows and 
two columns, characterized by intricate, large-scale structures 
with more than 100 nodes and numerous edges. These datasets 
were sourced from practical applications, such as media 
organization networks, scientific collaboration maps, and social 
network graphs. They provide a challenging test matrix for the 
algorithm, enabling an assessment of its ability to address the 
high crossover density and maintain interpretability in high-
complexity graphs. 

B. Workflow for Each Dataset- One K3,4 Bipartite 

The same structured workflow is applied to each dataset to 
evaluate how the proposed algorithm impacts the graph 
structure and clarity. The process begins with data pre-
processing to ensure compatibility with both R and Gephi. This 
includes cleaning and formatting the data into node and edge 
lists, which are essential for detecting K3,4 bipartite subgraphs 
[9]. Any structural issues, such as isolated nodes or redundant 
edges, are resolved at this stage to establish a reliable 
foundation for further analysis. 

The next step involves extracting K3,4 structures from the 
datasets. This is accomplished using the LinkComm and graph 
packages in R, which support advanced network analysis and 
visualization [9]. The algorithm identifies K3,4 bipartite 
structures and marks them for compression. This analysis leads 
into the clustering phase, where the algorithm’s ability to 
efficiently search large networks and detect dense crossovers is 
fully utilized. Following the identification of K3,4 clusters, these 
structures are compressed into single nodes. This step 
significantly reduces the number of intersecting edges in the 
resulting graph models, thereby improving the overall clarity 
and reducing visual complexity. Figure 2 portrays the 
transformation of the graph through this compression process, 
highlighting the reduction in edge density achieved by 
collapsing K3,4 clusters. 

 

 
Fig. 2.  Example of K3,4 bipartite. 

To ensure that critical information is preserved during the 
compression process, each of the K3,4 are presented in a labeled 
layout. To enhance interpretability, the nodes are uniquely 

color-coded or labeled, providing a clear distinction between 
different clusters. This visual differentiation is crucial for 
identifying the relationships and properties of the original 
graph structure at a glance. An example of this labeled and 
color-coded representation is shown in Figure 3, which 
demonstrates the enhanced clarity achieved through this 
approach. 

 

 
Fig. 3.  Example of K3,4 bipartite by LinkComm package during 
compression. 

Each compressed graph is displayed using a randomized 
tree layout in the Gephi environment to minimize spatial 
overlap and provide a clear view of the structural hierarchy 
within the network. This layout reduces visual clutter and helps 
highlight the relationships among the nodes and edges. To 
further enhance readability, node positioning and edge routing 
may be adjusted iteratively to minimize additional 
intersections, ascertaining that the final visualization is clean 
and easily interpretable [11]. Although the randomized tree 
layout significantly improves clarity compared to the original 
dataset, the process is inherently cyclical. Compression and 
layout optimization are performed in multiple iterations to 
refine the visual output. After each iteration, the resultant graph 
is analyzed to ensure that no new crossovers were introduced 
during clustering and that the compressed nodes effectively 
reduce edge density. Figure 4 presents the iterative process and 
the resulting improvement in visualization quality [5]. 

 

 
Fig. 4.  No K3,4  by LinkComm package after K3,4 compression. 



Engineering, Technology & Applied Science Research Vol. 15, No. 2, 2025, 21159-21165 21162  
 

www.etasr.com Alnafisah: Enhancing Algorithmic Techniques for Streamlined Complex Graph Structures in Big Data … 

 

C. Evaluation Metrics 

The effectiveness of the proposed algorithm in addressing 
the "Hair Ball" problem is assessed using both quantitative and 
qualitative metrics. Quantitative metrics focus on system-level 
and application-level goals, such as edge density reduction, 
node complexity, and runtime efficiency. Edge density 
reduction, expressed as a percentage, measures the algorithm’s 
efficiency in reducing the number of crossovers and improving 
graph readability [8, 12]. Node complexity is evaluated by 
comparing the degree of nodes and the average degree of nodes 
before and after the algorithm's application. This provides 
insights into how well the algorithm simplifies the perceived 
complexity of the graph. Runtime efficiency is another critical 
metric, measured using the growth rate of the algorithm in 
relation to the network size and expressed through the Big-O 
notation. This ensures the algorithm’s scalability and usability 
for large and complex networks [12-13]. Qualitative metrics 
address aspects, such as observer reliability, visual clarity, and 
layout aesthetics. Visual clarity is assessed based on whether 
the final graph is easily interpretable or still hindered by 
excessive crossovers. Observer reliability is measured by 
having stakeholders attempt specific tasks, such as identifying 
patterns or relationships in the graph, with better accuracy 
levels indicating improved clarity. Layout aesthetics are 
evaluated to ensure that the final graph not only conveys 
information effectively but also presents it in a visually 
appealing manner [14-15]. 

This experimental design provides a comprehensive 
framework for evaluating the algorithm across various graph 
types. By combining quantitative measures of performance 
with qualitative assessments of usability and aesthetics, it 
certifies a thorough validation of the algorithm’s ability to 
manage complex data displays. Ultimately, this approach aims 
to affirm the algorithm's practicality in mitigating the Hair Ball 
problem and improving the readability of complex networks in 
real-world applications. 

VII. RESULTS AND DISCUSSION 

A. Reduction in Edge Density and Visual Complexity 

The primary objective of the proposed algorithm was to 
address the problem of edge density in graph visualizations of 
complex datasets. By identifying and compressing the K3,4 
bipartite subgraphs and aggregating large, localized clusters of 
nodes with multiple edges, the algorithm significantly reduced 
the edge density across all datasets [14]. 

In small datasets, the reduction of K3,4 structures into 
compact alignments reduced the visual clutter, as multiple 
edges were consolidated into single connections associated 
with representative nodes. This process resulted in a reduction 
of the total crossover density by more than 50%, as observed 
through both visual inspections and quantitative evaluations of 
the edge intersections before and after compression [15-27]. 
For larger datasets, the algorithm proved equally effective, 
though, some adjustments were necessary. Larger graphs 
contained tightly packed K3,4 clusters, which required multiple 
levels of compression to achieve a comparable clarity. By 
grouping the overlapping structures and iteratively applying 
compression, the algorithm effectively reduced the crossover 

density while maintaining the relative spatial positioning of the 
compressed nodes, as seen in the original graph [13]. Despite 
minor overlaps in areas of high density, the visualization 
showed a marked improvement in clarity and readability 
compared to the uncompressed version, offering a clearer view 
of the network structure [27]. This substantial reduction in edge 
density across datasets of varying sizes demonstrates the 
scalability and adaptability of the algorithm. A key strength of 
the approach is its ability to minimize overlaps without 
eliminating critical relational data, thus reducing visual 
complexity and redundancy in the graph representation. These 
results highlight the algorithm’s potential to perform well even 
with large-scale data, where edge density is often significantly 
higher, reaffirming its effectiveness in enhancing big data 
visualization [1, 16]. The values in Table I were calculated with 
the help of the O (e+n )n theorem. 

TABLE I.  TIME COMPLEXITY OF THE ALGORITHMS 

Dataset n e 

Average 

time of 100 

runs 

Average time 

performance 

Small dataset 1 (No K3,4 
bitpartites) 

15 12 2.65 2.60 

Small dataset 2 (1 K3,4 
bitpartite) 

15 13 2.68 2.62 

Small dataset 3 (2 K3,4  
bitpartites) 

15 17 2.684 2.68 

Small dataset 4 (5 K2,3 
bitpartites) 

25 36 3.04 3.18 

Big dataset 1-AnAge (No 
K3,4 bitpartites) 

197 150 3.90 4.83 

Big dataset 2-Media (14 
K3,4 bitpartites) 

124 103 4.401 4.44 

Big dataset 3-Time use 
(30 K3,4 bitpartites) 

 238 5.639 5.33 

 

B. Improvement in Node Complexity and Structural Clarity 

Node complexity, defined as the average number of edges 
connected to each node in a network, is a key factor influencing 
the graph readability. Reducing node complexity is essential, as 
the cognitive overload can hinder an observer's ability to 
interpret relationships within the graph, often more than the 
connections themselves [17]. 

In smaller datasets, the reduction in node complexity was 
quite evident. By consolidating the K3,4 structures, the 
algorithm transformed several overlapping nodes, where 
multiple other nodes intersected, into a single large node. As a 
result, the number of intersections per node was significantly 
reduced. For example, a node originally connected to seven or 
eight other nodes could be compressed to only three or four 
connections. This restructuring led to a more efficient 
organization of nodes, allowing an observer to easily 
distinguish between core and peripheral nodes. The feedback 
from earlier trials supported this outcome, as users were able to 
identify patterns and relationships more easily when node 
complexity was simplified and extraneous connections were 
eliminated, which typically obscure graph interpretation [26]. 
For larger datasets, the reduction in node complexity remained 
positive, even though it required more careful handling. Large 
graphs tend to contain clusters with varying densities, making it 
challenging to simplify the graph without oversimplifying the 
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important relationships. To address this, the algorithm applied 
iterative compression to the selected K3,4 structures, gradually 
refining the graph. This approach allowed the algorithm to 
achieve a controlled reduction in node complexity while 
preserving high-level structures. Repeated compression cycles 
ensured that the graph remained organized and clearly 
segregated, without losing the critical information [19-25]. 

This approach aligns the algorithm with real-world 
applications by enabling the creation of interconnected node 
maps while simultaneously reducing the number of edges. This 
results in easily interpretable data visualizations, even for 
highly entangled datasets. The algorithm's consistent success in 
lowering node complexity across different datasets 
demonstrates its versatility and adaptability for use in a variety 
of contexts [1, 24]. 

C. Runtime Efficiency and Practicality for Large-Scale 
Graphs 

Timeliness in processing is critical when applying 
algorithms to large-scale graphs, particularly given the 
importance of data visualization in contemporary big data 
contexts. To assess the runtime efficiency of the algorithm, its 
size dependency was analyzed concerning the number of nodes 
in the graph [23]. 

For datasets containing up to 500 nodes, which are typical 
for mid-size organizational data, the runtime was consistently 
within a few seconds. This level of efficiency is invaluable for 
applications requiring real-time visualization, as it allows for 
rapid execution and enables the dynamic implementation of a 
wide range of algorithmic adjustments [9]. Using Big-O 
notation, the analysis confirmed that as the number of nodes 
increased, the algorithm's performance remained stable and 
efficient, with no significant slowdowns. For larger graphs, 
exceeding 1,000 nodes, the algorithm maintained a high level 
of efficiency, though, there was a slight increase in processing 
time as the graph density grew. For instance, datasets with over 
2,000 nodes required longer runtime due to the iterative nature 
of the compression algorithm, which repeatedly reduced the 
overlapping edges in densely connected structures [20]. 
However, these increases were marginal and did not detract 
from the algorithm’s practicality for large datasets. The runtime 
remained within a reasonable range, demonstrating the 
algorithm's ability to effectively handle complex graphs. 
Furthermore, these slight increases in processing time could be 
further optimized if necessary, highlighting the algorithm's 
potential for improvement [21]. Overall, the algorithm's 
dependency on the number of iterations relative to the dataset 
size underscores its suitability for both small- and large-scale 
graphs. This scalability suggests that the algorithm is well-
suited for real-time applications and other large-scale data 
visualization challenges, offering practical value across diverse 
scenarios. 

D. Observer Feedback on Clarity and Aesthetics 

To assess the qualitative efficiency of the algorithm, 
observers were invited to rate the aesthetics and readability of 
the compressed graphs, focusing on simplicity and visual 
appeal. This feedback was critical in evaluating whether the 

algorithm achieved its intended goal of reducing cognitive load 
and enhancing interpretability [9]. 

For smaller datasets, the observers consistently reported an 
improved clarity due to the algorithm's implementation. They 
noted that the reduced edge density made the interconnectivity 
between nodes more discernible, simplifying the navigation of 
the graph. The improved organization meant that node 
connections were no longer obscured, allowing users to quickly 
locate specific nodes or groups of nodes. This demonstrates the 
algorithm’s ability to transform the computational complexity 
into an accessible visual representation [9]. Similar benefits 
were observed with larger datasets, while additional advantages 
became evident in big data visualizations. Observers remarked 
that initially overwhelming and intricate graphs appeared much 
more manageable after compression. The algorithm's ability to 
prioritize the key nodes and spread the remaining clusters 
evenly led to a well-organized and navigable structure. From a 
graphical perspective, the final layouts exhibited a sense of 
symmetry, with color-coding effectively highlighting clusters 
and connections. The observers described the compressed 
graphs as intuitive and aesthetically pleasing, transforming 
what might have been a "data swamp" into an accessible and 
orderly visual representation [10]. The feedback from both 
small and large datasets reinforced the algorithm's value in 
enhancing the graphical and interpretational quality of complex 
plots. The observers concluded that the algorithm successfully 
produced clear, visually appealing, and easily interpretable data 
visualizations. This indicates that the algorithm is well-suited 
for tasks requiring both data analysis and presentation, making 
it a valuable tool for visualizing and understanding complex 
datasets [22]. 

E. Limitations and Opportunities for Further Research 

While the algorithm demonstrated high efficiency across a 
range of practical applications, several limitations emerged 
during testing, particularly with highly dense datasets, such as 
those from parenting sites. One challenge was encountered 
with datasets containing multiple levels of 'nesting' in K3,4 
structures. In cases where one bipartite graph was nested within 
another, the algorithm’s application and interpretation became 
time-consuming and visually confusing. Although the iterative 
compression strategy resolved the overlap issue for most 
clusters, in some cases, additional compression rounds were 
required. This slight increase in runtime led to some 
oversimplification of intricate structural features, particularly in 
very dense datasets. 

Future research could explore expanding the application of 
the K3,4 model alongside other simplification techniques, such 
as hierarchical methods or approaches from the spectral graph 
theory. These additional strategies could potentially improve 
the algorithm's performance, especially when dealing with 
highly dense datasets, by maintaining a balance between 
simplification and preserving key data relationships and 
structures [26]. Moreover, the integration of machine learning 
techniques for automatically identifying suitable subgraphs 
may enhance the algorithm's efficiency. Such an approach 
could allow the algorithm to adapt to varying data 
characteristics and densities, further optimizing its performance 
and reducing the need for manual intervention [22]. 
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VIII. CONCLUSION 

This research presents a novel strategy to address the "Hair 
Ball" problem, which arises from the complexity of the graph 
patterns in data visualization. By applying an algorithmic 
approach that simplifies correlations through the reduction of 
edge density and node complexity, the proposed method 
enhances the readability of dense graphs that are typically 
difficult to interpret. The key innovation of the algorithm lies in 
detecting and collapsing K3,4 bipartite subgraphs within large 
graphs. This significantly reduces the edge crossover density, 
improving both the clarity of visual representations and the 
overall utility of these graphs for further analysis. The 
algorithm's effectiveness was demonstrated across various 
datasets, including both small-scale, formal graphs and large, 
complex networks. The results indicate that the algorithm 
effectively minimizes the edge crossover density while 
preserving critical structural features. The reduction in edge 
density and node complexity, coupled with the improved graph 
readability, highlights the algorithm's value in simplifying the 
graph interpretation. Observers’ qualitative feedback further 
supports these findings, emphasizing the enhanced 
interpretability and visualization of the results. This suggests 
that the algorithm is particularly suitable for applications where 
a clear and accurate graph interpretation is crucial. While the 
algorithm performed well across datasets with varying node 
ratios, some limitations were observed when tested on large, 
densely connected networks. The repetitiveness in the 
compression process resulted in a slight increase in runtime, 
particularly when dealing with densely nested bipartite 
structures. However, these increases in runtime were minimal, 
and the algorithm remained effective in simplifying complex 
graphs. 

In conclusion, using K3,4 as a key vector to prune a 
complicated graph is feasible and functional. Feasibility means 
that it works and the required time is tolerable. Functional 
means that the average of 100 runtime results were identical to 
the Big-O results. 
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