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ABSTRACT 

Acute Lymphoblastic Leukemia (ALL) is a malignant neoplasm defined by the rapid proliferation of early 

lymphoid progenitors (lymphoblasts) within the bone marrow and peripheral blood. Due to its aggressive 

course, prompt and accurate diagnosis is essential and has a profound impact on patient outcomes. This 

study proposes an integrative deep learning method for ALL detection using the Acute Lymphoblastic 

Leukemia Image Database (ALL-IDB). This is accomplished by fusing one modified clinical data CNN 

integrated through an attention mechanism with another modified pre-trained CNN for image analysis. 

The performance of the proposed model was evaluated using the ALL-IDB1 and ALL-IDB2 datasets, 

achieving 99.2% accuracy with AUC at 0.998%. By incorporating clinical with image data, an overall 

increase of 2.3% in accuracy and 0.007 in AUC was observed. The results show that using deep learning to 

detect ALL is accurate and possible, laying the foundations for AI-based diagnoses of hematological 

cancers to be more accurate. 
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I. INTRODUCTION  

Acute Lymphoblastic Leukemia (ALL) is a malignancy of 
lymphoid progenitor cells known to affect both young children 
and adults. It is defined as the accelerated expansion of 
immature differentiation-phase lymphoblasts in the bone 
marrow, peripheral tissues, and other tissues [1]. ALL currently 
accounts for about 70 to 85% of childhood leukemia and is the 
most common cancer in children, affecting children from 2 to 5 
years of age [2]. A prompt and correct diagnosis is helpful to 
improve survival, as the disease evolves very rapidly if 
diagnosed late [3]. Conventional approaches to diagnostics 
involve photomicroscopy analysis of smears [4]. More 
commonly, the diagnosis involves the morphological 
assessment of blood smears, the identification of the person's 
phenotype, the analysis of chromosomes, and molecular tests 
[5].  

Deep Learning (DL), the most recent development of AI, 
has achieved excellent results in the field of medical image 
analysis [6]. In ALL detection, several studies have used CNNs 
to analyze features of blood smear microscopy images [7, 8]. 
These strategies proved to be highly accurate in categorizing 
ALL cells and might be helpful to pathologists at the 
identification stage. However, most of these methods are based 
solely on image data and may miss clinically relevant features 
that can improve diagnostic performance. It is a well-
established fact that clinical characteristics such as age, white 
blood cell count, and the presence of particular genetic changes 
play critical roles in ALL diagnostic and prognostic criteria [8]. 
Combining information at this feature level with image analysis 
could lead to possibly better and more stable diagnostic 
models.  

This study presents an integration of DL techniques [9-13] 
for ALL detection using image analysis and clinical data 
processing. The aim was to achieve better results than methods 
based solely on images. In light of this hypothesis, instead of 
developing a new dataset, a standard dataset was employed, 
namely ALL-IDB [14]. The main contributions of this study 
include the creation of a new DL framework to integrate CNN 
with image processing and clinical data analysis, and the 
incorporation of an attention mechanism to facilitate the 
combination of information from different data modalities [15, 
16]. Extended analysis was performed on ALL-IDB1 and 
ALL-IDB2 to determine the effectiveness of the proposed 
model in identifying ALL. 

In recent years, the use of ML and DL for the detection of 
ALL has grown tremendously. This section overviews the 
numerous studies in detail, with emphasis on those that 
employed the ALL-IDB dataset, besides integrating recent 
developments in the ALL-IDB integrative approaches. 

A. Traditional Machine Learning Approaches 

Early efforts in ALL detection leveraged classical ML 
algorithms applied to handcrafted features extracted from blood 
smear images [17, 18]. These methods laid the foundation for 
automated leukemia detection. In [19], significant strides in 
ALL detection were achieved using an SVM classifier. This 

method involved a multi-step process. For image 
preprocessing, contrast enhancement and color space 
conversion were used to improve image quality. Segmentation 
involved the use of k-means clustering to isolate white blood 
cells from other blood components. This study extracted 31 
features, including shape descriptors (area, perimeter, 
roundness), color-based features (mean and standard deviation 
in RGB and HSV color spaces), and texture features (derived 
from gray-level co-occurrence matrices). An SVM with a radial 
basis function kernel was trained on these features. This 
method achieved 93.2% accuracy on the ALL-IDB2 dataset, 
demonstrating the potential of carefully engineered features in 
leukemia detection. However, the reliance on manual feature 
selection highlights a limitation of traditional approaches. 

In [20], an ensemble classifier was introduced in the field. 
This approach was more sophisticated, using a shadowed C-
means clustering algorithm for more accurate cell 
segmentation. The feature set was extensive, including shape-
based features, texture features, and color features (color 
moments in different color spaces). For classification, this 
study combined Naive Bayes (NB), K-Nearest Neighbor 
(KNN), and Linear Discriminant Analysis (LDA) using a 
majority voting scheme. This multi-faceted approach resulted 
in 94.73% accuracy on ALL-IDB2, showcasing the power of 
ensemble learning and comprehensive feature engineering in 
medical image analysis. 

In [21], the focus was on the morphological aspects of 
leukocytes, which are crucial for leukemia diagnosis. This 
method used a combination of k-means clustering and 
mathematical morphology operations for segmentation. 
Features specifically related to nuclear and cellular morphology 
were extracted, such as nucleus-to-cytoplasm ratio, nuclear 
shape irregularity, and chromatin pattern. An SVM classifier 
was trained on these morphological features, achieving 93.5% 
accuracy on a subset of ALL-IDB2. This study highlighted the 
importance of incorporating domain knowledge in feature 
selection for medical diagnostic models.  

In [22], a different angle was explored, focusing on the 
color and statistical features of white blood cells. This approach 
was unique in its emphasis on color analysis. K-means 
clustering was used for initial cell segmentation, followed by 
the watershed algorithm for nucleus extraction. The feature set 
included color features, such as the mean and standard 
deviation in the RGB and HSV color spaces, and statistical 
features, such as skewness, kurtosis, and various moments of 
the intensity histogram. An SVM classifier was employed, 
achieving 95.2% accuracy on ALL-IDB2, demonstrating the 
potential of color-based analysis in leukemia detection. This 
model was particularly effective in distinguishing between 
different types of white blood cells based on their staining 
characteristics. These traditional ML approaches, although 
limited by the need for manual feature engineering, provided 
valuable insights into the key visual and statistical 
characteristics that differentiate leukemic from normal cells. 
These studies set the stage for more advanced techniques and 
highlighted the importance of various image characteristics in 
leukemia detection.  



Engineering, Technology & Applied Science Research Vol. 15, No. 2, 2025, 20776-20781 20778  
 

www.etasr.com Abu Owida et al.: Integrative Deep Learning for Enhanced Acute Lymphoblastic Leukemia Detection … 

 

B. Advances in Deep Learning for Medical Image Analysis 

The advent of DL, particularly Convolutional Neural 
Networks (CNNs), has dramatically improved ALL detection 
accuracy, offering end-to-end learning from raw image data. 
This section explores some DL approaches that have 
significantly advanced the field. In [23], the power of transfer 
learning was exploited in ALL detection. The results were 
groundbreaking, with ResNet50 achieving up to 99.50% 
accuracy. This study demonstrated that DL models pre-trained 
on large datasets, such as ImageNet, could be effectively 
adapted to medical imaging tasks, even with limited domain-
specific data. This study highlighted the efficiency of transfer 
learning in overcoming the challenge of small dataset sizes in 
medical imaging. 

In [24], a different approach was followed by designing a 
CNN architecture specifically for ALL detection. This model 
consisted of three convolutional layers (each followed by 
ReLU activation and max pooling) and two fully connected 
layers along with dropout for regularization. Data augmentation 
techniques were also employed. This model achieved 97.78% 
accuracy on ALL-IDB2. This study highlighted the potential of 
domain-specific CNN architectures in medical image analysis. 
High accuracy was achieved by tailoring the network 
architecture to the specific characteristics of the blood smear 
images while maintaining a relatively simple model structure. 

In [25], a comprehensive comparison of various CNN 
architectures was performed for leukemia detection. This study 
tested VGG16, ResNet50, Inception-v3, and DenseNet121. 
Each model was fine-tuned on the ALL-IDB2 dataset, with 
consistent preprocessing and data augmentation across all 
models. The results showed that DenseNet121 outperformed 
other models, achieving 98.70% accuracy. This study provided 
valuable insights into the relative strengths of different CNN 
architectures in the context of leukemia detection. The superior 
performance of DenseNet121 was attributed to its dense 
connectivity pattern, which allows for more efficient feature 
reuse and gradient flow. 

In [26], the common issue of limited data in medical 
imaging was addressed by employing advanced data 
augmentation techniques. A convolutional autoencoder was 
used to generate synthetic blood cell images. A CNN classifier 
was trained on this augmented dataset, achieving an impressive 
99.17% accuracy on ALL-IDB2. This study demonstrated the 
significant impact of intelligent data augmentation on model 
performance, especially in domains where acquiring large 
datasets is challenging. The use of generative models for data 
augmentation opened new possibilities for improving model 
robustness and generalization. 

In [27], an innovative two-stage model was presented that 
combined the strengths of CNNs and traditional ML. A CNN 
was used to automatically extract relevant features from blood 
smear images. Extreme Learning Machines (ELM) was 
employed for the final classification task, achieving 98% 
accuracy on ALL-IDB2. This study showcased the potential of 
combining DL's feature extraction capabilities with the 
efficiency of traditional classifiers. The hybrid approach 
offered a balance between the automatic feature learning of 

CNNs and the fast training and execution of ELM. In [28], an 
attention-based CNN was proposed for ALL detection. This 
architecture incorporated spatial attention mechanisms into a 
CNN framework. The attention module helped the model focus 
on the most relevant areas of the blood smear images. This 
model achieved 99.7% accuracy on ALL-IDB2. This study 
demonstrated how attention mechanisms could be leveraged to 
improve both performance and explainability in medical image 
analysis. By visualizing the attention maps, this study provided 
insights into which parts of the image were most important for 
the model's decision-making process. 

II. THE PROPOSED METHOD 

This study presents an integrated DL method for ALL 
detection, which includes one CNN for image identification 
and a second CNN for clinical information recognition. The 
architecture consists of three main components: An image 
analysis module, a clinical data processing module, and a 
fusion module. Figure 1 shows the entire architecture of the 
proposed model. 

 

 
Fig. 1.  Overview of the proposed model. 

1) Problem Formulation 

Let � � ���, ��, . . . , �	
  denote a set of �  blood smear 

images, where each �� ∈ ℝ����� represents an image with 
height ℎ , width � , and �  color channels. Additionally, let 
� �  ���, ��, . . . , �	
 represent the corresponding set of clinical 
data vectors, where each �� ∈  ℝ� is an �-dimensional vector 
of clinical features. The objective is to learn a function 
�: ��, �� →   that maps the input image and clinical data to a 
binary label ! ∈    �  �0, 1
, where 0 denotes a normal case 
and 1 indicates ALL. 

2) Model Architecture 

The proposed model consists of three main components. 

There is an image analysis module �� , a clinical data 

processing module �$ , and a fusion module �% . The overall 
function � can be expressed as: 

���, ��  �  �% � ��  ���,  �$  ����  (1) 

a) Image Analysis Module 

The first image analysis module ��  is based on the 
EfficientNet-B3 model [7], which presents high performance 
with small complexity and high accuracy. The architecture of 

�� is defined as: 

����� �  &���&���'�(������   (2) 
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where (�� is the EfficientNet B3 base model pre-trained with 
an ImageNet dataset, '�� refers to a global average pooling 

layer, &�� is a fully connected nonlinear layer R1536 → R512 

with ReLU activation, and &�� is a fully connected layer from 
)512 → )256 with ReLU activation. Dropout is used between 
&�� and &�� with a probability of 0.5 to avoid overfitting the 
model. This module gives the output as 256-dimensional 
features of the image.  

The clinical data processing module �$  is established for 
dealing with numerical and categorical clinical factors. It 
consists of a feed-forward neural network: 

� $���  �  &�-�.�&�/�����   (3) 

where &�/: )� → )128 is a standard densely connected layer 
followed by ReLU activation, .�� is a dropout layer with a 
dropout rate of 0.3, and &�- is a fully connected layer with a 
ReLU function, where the dimensions are reduced from 128 to 
64. The output of this module is in the form of a 64-dimension 
vector built up from the clinical data. 

b) Fusion Module 

The fusion module �%  uses a multi-head attention 
mechanism based on [8] to combine data from the image 
analysis and clinical data processing modules. Let 1 �
[�����; �$���] ∈ ℝ320  be the concatenated feature vector. 
The fusion process can be described as: 

Multi-head Attention: 6�1� � 789:;<=>?�1, 1, 1� 

Add and normalize: @1�1 + 6�1�� 

Feed-forward: &&�@1�1 + 6�1��� 

Add and normalize:  

@��@��1 +  6�1�� + &&�@��1 +  6�1����  

Classification: B�C · @��·� + E� 

where @�  and @�  are layer normalization operations, &&  is a 
position-wise feed-forward network consisting of two linear 
transformations with a ReLU activation in between, B  is the 
sigmoid activation function, and C  and E  are learnable 
parameters. The multi-head attention mechanism is defined as: 

789:;<=>?�F, G, H� � �I��>:�ℎ=>?�, . . . , ℎ=>?��CJ 

 (4) 

where  

ℎ=>?� �  6::=�:;I�KFC�
L, GC�

M , HC�
NO 

and 

6::=�:;I��F, G, H� � softmax WLMX

√Z[\ H  (5) 

This study used ℎ � 8 attention heads, with ?[ � 40. 

c) Loss Function and Optimization 

Using the binary cross-entropy loss, the ALL detection is 
defined as a binary classification problem.  

^�_� � − �
a ∑ [!� 9Ic�����  , ����  +  �1 −  !�� 9Ic�1 −a

�d�
      ���� , ����]      (6) 

where _ represents the model parameters, @ is the number of 
samples, and !�  is the ground truth label for the ;-th sample. 

The Adam optimizer [9] was employed with the following 
hyperparameters: Initial learning rate: e � 1 � 10f- , 
exponential decay rates: g� � 0.9 , g� � 0.999 , and epsilon 
i � 1 � 10fj. The following strategies were implemented to 
address potential overfitting and improve generalization: 

weight decay regularization with k � 1 � 10fl  learning rate 
schedule [28, 29]. The validation loss was monitored with a 
patience of 10 epochs. 

III. RESULTS AND DISCUSSION 

A. Model Performance 

The proposed integrative DL model was tested using both 
the original and subsampled versions of the ALL-IDB dataset. 
The ALL-IDB dataset contains high-resolution blood smear 
images collected for the diagnosis of ALL. ALL-IDB consists 
of two subsets: ALL-IDB1 used for training and ALL-IDB2 
used for evaluation. Both of them are human-annotated and 
publicly accessible [2].  

TABLE I.  PERFORMANCE COMPARISON  

Model Accuracy Precision Recall F1-score 
AUC-
ROC 

Proposed Integrative 

Model 
0.992 0.994 0.990 0.992 0.998 

CNN-only 

(EfficientNet-B3) 
0.972 0.975 0.969 0.972 0.991 

SVM with 

handcrafted features 

[19] 

0.932 0.938 0.925 0.931 0.957 

Ensemble of 

classifiers [20] 
0.947 0.951 0.943 0.947 0.974 

 
In terms of all indicators, the proposed integrative model 

outperformed the benchmark approaches to test the value of 
incorporating image analysis with clinical data. Here, it is 
essential to emphasize the increase in the AUC-ROC score, 
which characterizes the increase in discriminative ability. 

B. Ablation Study 

An ablation study was performed to understand the 
contribution of different components, as shown in Table II. The 
results help emphasize just how important each component is, 
as well as which one has the greatest impact on increasing 
performance. 

TABLE II.  ABLATION STUDY RESULTS 

Model Configuration Accuracy AUC-ROC 

Full model 0.992 0.998 

Without clinical data 0.972 0.991 

Without attention mechanism 0.985 0.995 

Without data augmentation 0.978 0.993 
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IV.  CONCLUSION 

This study presented a novel concept of an integrative DL 
system for ALL detection through blood smear images along 
with clinical data. Key findings and contributions include:  

 Outcompeting other state-of-the-art models, the proposed 
one was designed to feature a multimodal architecture, 
which led to an accuracy of 99.2% and an AUC-ROC of 
0.998 on ALL-IDB. 

 It is an example of how image analysis supplemented with 
clinical data delivers synergistic results, ensuring higher 
detection rates.  

 Guides future research on difficult cases and subtypes of 
ALL.  

The superior performance of the proposed model indicates 
how valuable it can be in real clinical applications, perhaps 
more than just a diagnostic tool, but a decision-making tool for 
hematopathologists. However, additional validation is required 
on different, multiple-center datasets before its application in 
clinical settings. Future work should focus on: 

 Evaluating the model into a full range of different types of 
leukemia and other hematological disease identification and 
differentiation.  

 Adding other types of data, for example, genotypic and 
phenotypic data, namely, immunophenotype profiles.  

 Trial testing is an independent clinical trial to populate the 
model and determine its effect on diagnostic accuracy and 
patient outcomes in actual real-life settings. 

In conclusion, the proposed integrated model is a 
noteworthy approach toward enhancing AI-assisted diagnosis 
in the field of haematology-oncology along with enhancing 
early detection and treatment strategies of ALL. 
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