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ABSTRACT 

Skin cancer is a significant global health issue where early detection is essential to improve outcomes. This 

study evaluates hybrid deep learning models that combine CNN architectures (MobileNetV2, ResNet-18, 

EfficientNet-B0, and others) with metadata (age, lesion localization) for classification using the SLICE-3D 

subset of the ISIC 2024 dataset. MobileNetV2 achieved a recall of 99.2% and an accuracy of 97.7%, while 

EfficientNet-B0 demonstrated a recall of 98.5% and an accuracy of 97.2%, making them ideal for 

telemedicine in resource-limited settings due to their low computational demands. ResNet-18 and 

DenseNet-121, with recalls of 99.0% and 98.7%, respectively, excelled in clinical applications but required 

greater computational resources. These hybrid models show great potential as accessible and accurate 

tools for improving skin cancer detection. Future work should validate these findings on diverse datasets 

and optimize preprocessing to further enhance sensitivity and early diagnostic accuracy. 

Keywords-skin cancer detection; hybrid deep learning models; telemedicine; early cancer detection; ISIC 2024 

dataset; machine learning in healthcare; melanoma detection; clinical applications of AI; medical images 
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I. INTRODUCTION  

Skin cancer is a major global health problem, and early 
detection is essential to improve survival rates and reduce 
deaths. Melanoma, the deadliest form of skin cancer, is 
especially dangerous due to its fast ability to spread [1]. The 
early diagnosis of melanoma and other malignant skin lesions 
can significantly improve treatment outcomes but often 
requires access to specialized clinics and high-quality imaging 
tools, which are not widely available in rural or underserved 
areas [2]. Traditional methods to detect skin cancer rely on 
visual checks by dermatologists, followed by a biopsy to 
confirm the diagnosis [3]. Recent advances in Artificial 
Intelligence (AI), especially deep learning, have introduced 
new effective methods for detecting skin cancer by analyzing 
images of skin lesions [4]. 

Implementing AI-driven diagnostic tools outside specialist 
clinics presents unique challenges. Skin cancer screening based 
on images typically relies on high-quality standardized images 
taken with specialized equipment, which may not be available 
in primary care or telemedicine settings. In many cases, image 
quality varies significantly, reducing diagnostic accuracy. The 
rise of telemedicine, accelerated by the COVID-19 pandemic, 
has increased the need for reliable diagnostic tools that work 
well with diverse image formats, including cellphone photos 
[5]. AI systems capable of adapting to lower-quality images 
could improve access to skin cancer screening and early 
treatment, particularly for remote and underserved 
communities. 

Deep learning models, particularly Convolutional Neural 
Networks (CNNs), are highly effective in medical image 
processing, achieving high sensitivity and specificity in tasks 
such as skin lesion classification [6, 7]. CNN architectures such 
as ResNet, MobileNet, and VGG extract detailed visual 
features efficiently but often overlook patient metadata (e.g., 
age, sex, lesion location) that can enhance diagnostic accuracy. 
Integrating metadata with image analysis in hybrid CNN 
models improves efficacy by utilizing both visual and 
contextual information [8]. Recent advances in deep learning 
offer significant potential for identifying skin cancer, 
addressing limitations of conventional methods such as skilled 
visual inspection, dermoscopic evaluation, and biopsy, which 
are resource-intensive and less accessible in underserved areas. 
CNNs provide automated and scalable solutions by analyzing 
skin lesion images [9]. These models excel at recognizing 
patterns, distinguishing malignant from benign lesions, and 
achieving diagnostic performance that often rivals or surpasses 
that of dermatologists. For instance, in [10], CNNs 
outperformed dermatologists in multiclass skin lesion 
classification. In [9], it was shown that a market-approved 
CNN matched dermatologist-level performance across various 
types of lesion, highlighting the scalability of CNNs in clinical 
applications. 

Hybrid deep learning frameworks that combine CNN-based 
image analysis with patient metadata (e.g., age, lesion location, 
gender) have shown promise in improving diagnostic precision. 
By integrating visual and contextual data, these models achieve 
greater accuracy than image-only approaches [11]. For 

instance, in [8], incorporating metadata into CNNs significantly 
improved the interpretability and accuracy of melanoma 
diagnosis. In [12], the use of an Inception-ResNet-v2 model 
with metadata achieved a 5% improvement in accuracy, 
highlighting the clinical relevance of such methods, especially 
in telemedicine settings with limited clinical data. 

This study aims to bridge specialist dermatologic care and 
general clinical use by evaluating hybrid CNN models with 3D 
Total Body Photography (3D-TBP) data. The ISIC 2024 
dataset, which features high-resolution lesion images from 3D 
body captures, mimics the quality of smartphone photos 
common in telemedicine. Comprehensive metadata for each 
lesion allows hybrid models to combine visual and tabular data 
for more accurate predictions. 

II. METHODOLOGY 

A. Dataset Description 

The SLICE-3D subset of the International Skin Imaging 
Collaboration (ISIC) 2024 dataset [13] was used, which 
contains approximately 500,000 images of skin lesions derived 
from 3D TBP. The dataset integrates high-resolution images 
with comprehensive metadata, allowing the development of 
hybrid diagnostic models that combine visual and tabular data. 
Each image is linked to a unique identifier (isic_id) and paired 
with demographic and anatomical details, such as age, sex, and 
lesion location. These features are supplemented with binary 
diagnostic labels, malignant (1) or benign (0), that serve as 
ground truth for model training and evaluation. The image data 
consists of 15×15 mm cropped regions stored in JPEG format, 
optimized in an HDF5 file for efficient loading during training. 
Metadata includes lesion characteristics (e.g., size, perimeter, 
color irregularity, contrast) and patient-specific attributes, 
providing critical contextual information to enhance diagnostic 
precision. To address the class imbalance, a common challenge 
in medical datasets due to the lower prevalence of malignant 
cases, random downsampling of benign samples and 
upsampling of malignant samples were applied to create a 
balanced training set. Additionally, a class-weighted loss 
function was used to assign higher penalties for misclassifying 
malignant lesions, ensuring that the model prioritizes these 
critical cases during training. 

B. Data Preprocessing 

Preprocessing was used to ensure compatibility with deep 
learning models and to improve robustness against variations in 
clinical settings. Images were resized to 128×128 pixels to 
reduce computational demands while maintaining sufficient 
resolution for feature extraction. Data augmentation techniques, 
including random horizontal and vertical flips, rotations, and 
brightness adjustments, were applied to enhance model 
generalization and performance across diverse imaging 
conditions. Metadata attributes, such as sex and lesion location, 
were encoded numerically using LabelEncoder, while 
continuous variables, such as age and lesion size, were 
normalized with StandardScaler to standardize their range and 
facilitate convergence during training. The processed metadata 
was then integrated with image features to create a hybrid 
dataset, combining both visual and contextual information for 
enhanced diagnostic accuracy. 
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C. Model Architecture 

This study assessed six CNN architectures: MobileNet, 
ResNet, EfficientNet, VGG, DenseNet, and GoogLeNet. Each 
backbone possesses distinct architectural features that affect its 
performance and computing demands. 

 MobileNetV2 [14] is a lightweight architecture with 
reduced parameters, optimized for efficient inference, 
rendering it suitable for resource-limited settings. 

 ResNet-18 [15] uses residual connections to facilitate deep 
feature extraction and alleviate vanishing gradient 
problems. 

 EfficientNetB0 [16] attains an equilibrium among model 
depth, width, and resolution, delivering robust performance 
with a reduced number of parameters. 

 VGG-11 [17] is a profound, sequential design that 
facilitates intricate feature extraction, although with 
increased memory consumption. 

 DenseNet-121 [18] incorporates dense connections that 
promote feature reutilization and optimize gradient flow, 
thus increasing performance on intricate classification 
problems. 

 GoogLeNet [19] utilizes inception modules to capture 
multi-scale characteristics, enabling the analysis of patterns 
at various resolutions. 

The model integrates image and tabular data in a hybrid 
architecture, as shown in Figure 1. The CNN backbone 
processes image inputs to extract feature vectors, while tabular 
data is processed through fully connected layers. The outputs 
from both branches are concatenated into a unified feature 
vector and passed through additional dense layers for binary 
classification. This architecture combines visual and contextual 
information to enhance diagnostic accuracy. 

D. Training and Validation 

1) Train-Validation Split 

The dataset was partitioned between the training and 
validation sets using an 80:20 split, ensuring that both sets were 
stratified by the target label to preserve class balance. 
Stratification is crucial to address the intrinsic class imbalance 
in skin cancer datasets, where benign cases generally exceed 
malignant ones. 

2) Training Parameters and Optimization 

 Loss function: Binary cross-entropy loss is used as the 
objective function, suitable for binary classification tasks. 

 Optimizer: The Adam optimizer is employed with a 
learning rate of 1e-4 and weight decay to prevent 
overfitting. A ReduceLROnPlateau scheduler further 
reduces the learning rate when validation performance 
plateaus, aiding in stable convergence. 

 Early stopping: An early stopping mechanism with patience 
of 50 epochs is used to halt training if validation loss does 
not improve, preserving computational resources and 
avoiding overfitting. 

 Model checkpoints: Checkpoints save the best-performing 
model based on validation ROC-AUC scores, ensuring the 
optimal model is used for testing. 

Training was performed on a Tesla P100-PCIE-16GB GPU, 
supplied by Kaggle. 

 

 

Fig. 1.  Hybrid model architecture with a network for image features and 

metadata. 

3) Evaluation Metrics 

The following metrics were employed to comprehensively 
evaluate model performance. 

 Accuracy: Measures the proportion of correctly classified 
samples out of the total samples. 

 Precision and Recall: Precision indicates the fraction of true 
positive predictions among all positive predictions, while 
recall captures the fraction of actual positives correctly 
identified. These metrics are crucial for assessing the 
model's performance in distinguishing malignant lesions. 

 F1-score: The harmonic means of precision and recall, 
offering a balanced assessment between them. 

 ROC-AUC (Receiver Operating Characteristic Area Under 
Curve): Indicates the model's capacity to differentiate 
between classes at various thresholds, with elevated values 
signifying superior performance. ROC-AUC is important 
for model selection due to its significance in medical 
diagnosis. 

 Confusion Matrix: Confusion matrices were used for each 
model to evaluate true positives, false positives, false 
negatives, and true negatives, offering insights into 
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diagnostic inaccuracies and emphasizing each model's 
proficiency in accurately classifying malignant lesions. 

Alongside accuracy and classification metrics, 
computational efficiency was assessed using memory 
consumption, parameter quantity, and training duration. These 
parameters are especially pertinent for assessing the viability of 
implementing each CNN backbone in resource-constrained 
clinical environments. 

III. RESULTS 

1) Model Performance 

The performance of each CNN backbone (MobileNet, 
GoogLeNet, ResNet, EfficientNet, VGG, and DenseNet) was 
evaluated on the validation set, and the results are shown in 
Table I. 

TABLE I.  PERFORMANCE METRICS OF CNN BACKBONES 
ON VALIDATION SET 

Backbone Accuracy Precision Recall F1 score ROC AUC 

MobileNet 0.977 0.942 0.992 0.967 0.995 

ResNet 0.962 0.903 0.990 0.944 0.996 

GoogLeNet 0.95 0.87 0.99 0.94 0.99 

EfficientNet 0.972 0.933 0.985 0.958 0.994 

VGG 0.976 0.940 0.990 0.964 0.993 

DenseNet 0.973 0.935 0.987 0.960 0.995 

 
MobileNet demonstrated exceptional performance in 

identifying cancerous lesions, achieving the highest accuracy of 
0.977 and an almost perfect recall of 0.992, underscoring its 
remarkable sensitivity. Its F1 score of 0.967 further highlights 
its robust overall performance in both benign and malignant 
cases. ResNet excelled with the highest ROC-AUC of 0.996, 
indicating superior classification efficacy, and maintained a 
high recall of 0.990, although its accuracy and precision were 
slightly lower than MobileNet. Meanwhile, VGG and 
DenseNet also exhibited strong performance, with VGG 
achieving a high precision of 0.940 and DenseNet striking an 
effective balance with a recall of 0.987 and an F1 score of 
0.960. 

B. Training and Validation Metrics Across CNN Backbones 

Figure 2 illustrates the training and validation loss, as well 
as the AUC metrics, for various CNN backbones over 35 
epochs. The plots for train and validation losses show that 
MobileNet and EfficientNet converge faster than the other 
backbones, reaching their minimum validation loss within the 
first 10 epochs. This indicates efficient learning, suggesting 
that these models perform well on the dataset with fewer 
training steps. In contrast, VGG and GoogLeNet show more 
pronounced fluctuations in validation loss, pointing to potential 
instability in the training process or increased sensitivity to the 
learning rate. The train and validation AUC and plots reveal a 
sharp initial gain in AUC for all models during the first few 
epochs, followed by slower convergence. MobileNet and 
DenseNet-121 achieved near-optimal AUC values quickly, 
demonstrating strong learning capabilities. MobileNet, in 
particular, achieved fast convergence and high stability during 
training, making it especially suitable for telemedicine 
applications that demand both efficiency and reliability. 

 

Fig. 2.  Training and validation metrics across different backbones. 

C. Training Efficiency and Computational Resource Usage 

Training time, memory usage, and parameter count are 
critical factors for evaluating the deployability of the model in 
clinical settings, particularly those with limited computational 
resources. MobileNet required the least memory (8.54 MB) and 
completed training in 287 seconds, making it ideal for 
resource-constrained environments. ResNet offered a balanced 
approach with moderate resource usage and high diagnostic 
precision. VGG, despite its accuracy, consumed the most 
memory (427.26 MB), making it more suitable for resource-
rich settings. DenseNet struck an effective balance between 
performance and efficiency, requiring relatively low resources 
and delivering strong results. The comparisons in Table II 
highlight MobileNet and EfficientNet as highly viable options 
for real-time applications on limited hardware. 

TABLE II.  TRAINING EFFICIENCY AND RESOURCE USAGE 

Backbone Training time 

(s) 

Total memory 

(MB) 

Trainable 

parameters 

MobileNet 287 8.54 2,238,561 

ResNet 231 42.69 11,190,433 

GoogLeNet 210 21.42 5614337 

EfficientNet 237 15.34 4,022,237 

VGG 235 427.26 112,002,529 

DenseNet 258 26.58 6,968,289 

 
D. Confusion Matrices 

Figure 3 highlights the strengths and weaknesses of each 
CNN backbone in distinguishing benign from malignant 
lesions. MobileNetV2 demonstrated high recall with minimal 
false negatives, making it ideal for early cancer detection in 
telemedicine, although moderate false positives in low-contrast 
lesions suggest preprocessing improvements. ResNet-18 and 
DenseNet-121 showed strong sensitivity with few false 
negatives but moderate false positives in benign cases with 
atypical textures. GoogLeNet, although highly sensitive, 
produced more false positives due to overestimating 
malignancy. VGG-11 balanced false positive and negative rates 
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but required significant memory, limiting its use in resource-
constrained settings. EfficientNet-B0 offered a balanced 
performance, with low false negatives and controlled false 
positives, making it well-suited for real-time, resource-limited 
applications. MobileNetV2 and EfficientNet-B0 stand out for 
telemedicine, while ResNet-18 and DenseNet-121 are more 
suited for clinical environments. 

 

 

Fig. 3.  Confusion matrices for different backbones on the validation set. 

E. Model Predictions 

Figure 4 illustrates prediction probabilities from different 
CNN backbones for selected test images. GoogLeNet displayed 
higher confidence, assigning a probability of 0.9775 to 
ISIC_0015657, compared to near-zero predictions from 
MobileNet, ResNet, VGG, DenseNet, and EfficientNet. This 
overconfidence increases the risk of false positives in 
ambiguous cases. In contrast, ResNet and DenseNet adopted a 
more cautious approach, with lower probabilities under 
uncertain conditions, while EfficientNet showed moderate 
sensitivity, as seen in ISIC_0015729. These results highlight 
the trade-off between GoogLeNet's assertiveness, which may 
lead to false positives, and the conservative yet reliable 
predictions of other models, such as ResNet and DenseNet. 

IV. DISCUSSION 

A. Key Findings and Interpretation 

The hybrid model architecture demonstrated strong 
diagnostic accuracy and computational efficiency, particularly 
with MobileNetV2 and EfficientNet-B0, making them ideal for 
telemedicine applications. MobileNetV2's low false-negative 
rate highlights its suitability for early cancer detection in 
resource-limited settings, while EfficientNet-B0 balances recall 
and precision, reducing unnecessary follow-ups. In clinical 
environments where computational resources are less 
restricted, ResNet-18 and DenseNet-121 excel due to their high 
sensitivity and feature extraction capabilities. Conversely, 
GoogLeNet's tendency to produce false positives highlights its 
potential for minimizing missed malignancies but also 
underscores the need for cautious deployment to avoid 
excessive follow-ups. 

 

Fig. 4.  Predictions from CNN backbones on test images. 

B. Comparison with Existing Literature 

Recent studies confirm that combining image data with 
metadata improves skin cancer classification accuracy. A 
systematic review in [20] highlighted that integrating patient 
data such as age, sex, and lesion location into CNN-based skin 
cancer classifiers consistently improved diagnostic accuracy 
across various studies. In [21], 92.34% balanced accuracy was 
achieved with a CNN+ANN hybrid model compared to 
73.69% for image-only CNNs, using the ISIC 2019 dataset, a 
benchmark dataset with 25,331 dermoscopic images labeled for 
multiple skin lesion types and metadata. In [22], skin lesion 
classification achieved 95.2% accuracy using GAN-based 
image augmentation applied to the ISIC 2018 dataset, which 
contains 10,015 dermoscopic images annotated for diagnostic 
tasks. In [23], a hybrid AI framework was proposed, leveraging 
diverse datasets, including Derm7pt, a dermatologist-annotated 
dataset with metadata, achieving 93.04% accuracy, 92.0% 
recall, and 93.0% precision. In [24], the ISIC 2019 and ISIC 
2020 datasets were employed, achieving accuracies of up to 
96% with a hybrid VGG19+SVM model and demonstrating the 
effectiveness of generative AI for data augmentation. This 
study used the ISIC 2024 dataset, specifically the SLICE-3D 
subset with 500,000 high-resolution images and comprehensive 
metadata (e.g., patient age, sex, lesion localization). 
MobileNetV2 achieved 99.2% recall and 97.7% accuracy, 
while EfficientNet-B0 achieved 98.5% recall and 97.2% 
accuracy, demonstrating their suitability for telemedicine 
applications. ResNet-18 and DenseNet-121 achieved 99.0% 
and 98.7% recall, respectively, with strong performance in 
clinical settings. These findings further validate hybrid models 
as accessible and accurate tools to improve skin cancer 
detection in various contexts (Table III). 

TABLE III.  COMPARISON WITH EXISTING STUDIES 

Study Year Backbone used Dataset Accuracy (%) 

[21] 2021 CNN + ANN hybrid ISIC 2019 92.34 

[22] 2020 GAN-enhanced CNN ISIC 2018 95.2 

[23] 2024 Hybrid AI Framework ISIC 2019 93.04 

[24] 2023 VGG19+SVM Hybrid 
ISIC 2019 

& 2020 
96 

This 

study 
2024 

MobileNetV2,  

ResNet, 

GoogLeNet, 

EfficientNet, 

VGG, 

DenseNet 

ISIC 2024 

97.7 

96.2 

95 

97.2 

97.6 

97.3 
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C. Clinical Implications 

The high recall rates of MobileNetV2 and EfficientNet-B0, 
along with their computational efficiency, make them suitable 
for telemedicine, particularly in underserved areas where early 
detection can improve outcomes. These models could be 
integrated into mobile platforms for primary care or telehealth 
professionals to efficiently identify high-risk cases. For 
specialized clinical settings, ResNet-18 and DenseNet-121 
provide greater accuracy and sensitivity, critical where 
diagnostic precision is paramount. The incorporation of 
metadata into hybrid models further enhances clinical decision-
making by combining visual and contextual features for 
comprehensive analysis. 

D. Limitations and Future Directions 

The reliance on synthetic class balancing may introduce 
biases, potentially overfitting to malignant features. Future 
research should explore alternative balancing techniques and 
include more diverse datasets to enhance generalizability. 
Further studies should evaluate the impact of specific metadata, 
such as patient demographics or lesion history, on model 
performance. Additionally, external datasets from mobile 
devices and diverse clinical environments should be used to 
validate findings. Advanced techniques such as transfer 
learning and domain adaptation can further optimize model 
performance across varied imaging conditions, ensuring robust 
functionality in both clinical and telemedicine contexts. 

V. CONCLUSION 

This study highlights the potential of hybrid deep-learning 
models that integrate image data and metadata for early skin 
cancer detection. MobileNetV2 and EfficientNet-B0 were 
particularly effective for telemedicine applications, offering 
high recall, low false-negative rates, and computational 
efficiency, making them suitable for resource-constrained 
settings. These models provide affordable and reliable 
preliminary screening tools, crucial to improve outcomes in 
underserved populations. In clinical environments where 
accuracy is critical, ResNet-18 and DenseNet-121 performed 
exceptionally well, with low false-negative rates, making them 
strong alternatives where computational resources are 
available. Integration of metadata with image analysis 
improves model precision and allows for more comprehensive 
assessments by leveraging both visual and contextual features. 

Despite these promising results, limitations such as the 
reliance on synthetic class balancing and controlled datasets 
need to be addressed. Future research should validate these 
models using diverse real-world datasets, particularly images 
from mobile devices in varied clinical environments. 
Optimizing preprocessing steps and incorporating more 
complex metadata could further improve model specificity and 
diagnostic utility. 

In summary, hybrid deep learning frameworks bridge the 
gap between specialized dermatology and general telemedicine, 
offering reliable diagnostic tools that enhance early detection 
and reduce the global burden of skin cancer, especially in 
underserved areas. 

 

REFERENCES 

[1] The Skin Cancer Foundation. https://www.skincancer.org/. 

[2] V. A. Rajendran and S. Shanmugam, "Automated Skin Cancer Detection 
and Classification using Cat Swarm Optimization with a Deep Learning 
Model," Engineering, Technology & Applied Science Research, vol. 14, 
no. 1, pp. 12734–12739, Feb. 2024, https://doi.org/10.48084/etasr.6681. 

[3] H. Vega-Huerta et al., "Convolutional Neural Networks on Assembling 
Classification Models to Detect Melanoma Skin Cancer," International 
Journal of Online and Biomedical Engineering (iJOE), vol. 18, no. 14, 
pp. 59–76, Nov. 2022, https://doi.org/10.3991/ijoe.v18i14.34435. 

[4] A. A. Adegun and S. Viriri, "Deep Learning-Based System for 
Automatic Melanoma Detection," IEEE Access, vol. 8, pp. 7160–7172, 
2020, https://doi.org/10.1109/ACCESS.2019.2962812. 

[5] K. Vodrahalli et al., "Development and Clinical Evaluation of an 
Artificial Intelligence Support Tool for Improving Telemedicine Photo 
Quality," JAMA Dermatology, vol. 159, no. 5, May 2023, Art. no. 496, 
https://doi.org/10.1001/jamadermatol.2023.0091. 

[6] A. Imran, A. Nasir, M. Bilal, G. Sun, A. Alzahrani, and A. 
Almuhaimeed, "Skin Cancer Detection Using Combined Decision of 
Deep Learners," IEEE Access, vol. 10, pp. 118198–118212, 2022, 
https://doi.org/10.1109/ACCESS.2022.3220329. 

[7] T. Imran, A. S. Alghamdi, and M. S. Alkatheiri, "Enhanced Skin Cancer 
Classification using Deep Learning and Nature-based Feature 
Optimization," Engineering, Technology & Applied Science Research, 
vol. 14, no. 1, pp. 12702–12710, Feb. 2024, https://doi.org/10.48084/ 
etasr.6604. 

[8] S. Wang, Y. Yin, D. Wang, Y. Wang, and Y. Jin, "Interpretability-Based 
Multimodal Convolutional Neural Networks for Skin Lesion Diagnosis," 
IEEE Transactions on Cybernetics, vol. 52, no. 12, pp. 12623–12637, 
Dec. 2022, https://doi.org/10.1109/TCYB.2021.3069920. 

[9] R. C. Maron et al., "Systematic outperformance of 112 dermatologists in 
multiclass skin cancer image classification by convolutional neural 
networks," European Journal of Cancer, vol. 119, pp. 57–65, Sep. 2019, 
https://doi.org/10.1016/j.ejca.2019.06.013. 

[10] H. A. Haenssle et al., "Man against machine reloaded: performance of a 
market-approved convolutional neural network in classifying a broad 
spectrum of skin lesions in comparison with 96 dermatologists working 
under less artificial conditions," Annals of Oncology, vol. 31, no. 1, pp. 
137–143, Jan. 2020, https://doi.org/10.1016/j.annonc.2019.10.013. 

[11] A. Kharbouche, Z. Madini, Y. Zouine, and N. El-Haryqy, "Signal 
demodulation with Deep Learning Methods for visible light 
communication," in 2023 9th International Conference on Optimization 
and Applications (ICOA), AbuDhabi, United Arab Emirates, Oct. 2023, 
pp. 1–5, https://doi.org/10.1109/ICOA58279.2023.10308822. 

[12] R. A. Mehir and A. Ameri, "Skin Cancer Detection Based on Deep 
Learning," Journal of Biomedical Physics and Engineering, vol. 12, no. 
6, Dec. 2022, https://doi.org/10.31661/jbpe.v0i0.2207-1517. 

[13] N. R. Kurtansky et al., "The SLICE-3D dataset: 400,000 skin lesion 
image crops extracted from 3D TBP for skin cancer detection," Scientific 
Data, vol. 11, no. 1, Aug. 2024, Art. no. 884, https://doi.org/ 
10.1038/s41597-024-03743-w. 

[14] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen, 
"MobileNetV2: Inverted Residuals and Linear Bottlenecks," in 2018 
IEEE/CVF Conference on Computer Vision and Pattern Recognition, 
Salt Lake City, UT, Jun. 2018, pp. 4510–4520, https://doi.org/10.1109/ 
CVPR.2018.00474. 

[15] K. He, X. Zhang, S. Ren, and J. Sun, "Deep Residual Learning for Image 
Recognition," in 2016 IEEE Conference on Computer Vision and 
Pattern Recognition (CVPR), Las Vegas, NV, USA, Jun. 2016, pp. 770–
778, https://doi.org/10.1109/CVPR.2016.90. 

[16] B. Koonce, "EfficientNet," in Convolutional Neural Networks with Swift 
for Tensorflow, Berkeley, CA, USA: Apress, 2021, pp. 109–123. 

[17] K. Simonyan and A. Zisserman, "Very Deep Convolutional Networks 
for Large-Scale Image Recognition." arXiv, Apr. 10, 2015, 
https://doi.org/10.48550/arXiv.1409.1556. 

[18] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, "Densely 
Connected Convolutional Networks," in 2017 IEEE Conference on 



Engineering, Technology & Applied Science Research Vol. 15, No. 2, 2025, 20927-20933 20933  
 

www.etasr.com El Mrabet et al.: Enhancing Early Detection of Skin Cancer in Clinical Practice with Hybrid Deep … 

 

Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 
Jul. 2017, pp. 2261–2269, https://doi.org/10.1109/CVPR.2017.243. 

[19] C. Szegedy et al., "Going deeper with convolutions," in 2015 IEEE 
Conference on Computer Vision and Pattern Recognition (CVPR), 
Boston, MA, USA, Jun. 2015, pp. 1–9, https://doi.org/10.1109/CVPR. 
2015.7298594. 

[20] J. Höhn et al., "Integrating Patient Data Into Skin Cancer Classification 
Using Convolutional Neural Networks: Systematic Review," Journal of 
Medical Internet Research, vol. 23, no. 7, Jul. 2021, Art. no. e20708, 
https://doi.org/10.2196/20708. 

[21] D. N. A. Ningrum et al., "Deep Learning Classifier with Patient’s 
Metadata of Dermoscopic Images in Malignant Melanoma Detection," 
Journal of Multidisciplinary Healthcare, vol. Volume 14, pp. 877–885, 
Apr. 2021, https://doi.org/10.2147/JMDH.S306284. 

[22] Z. Qin, Z. Liu, P. Zhu, and Y. Xue, "A GAN-based image synthesis 
method for skin lesion classification," Computer Methods and Programs 
in Biomedicine, vol. 195, Oct. 2020, Art. no. 105568, https://doi.org/ 
10.1016/j.cmpb.2020.105568. 

[23] E. Farea, R. A. A. Saleh, H. AbuAlkebash, A. A. R. Farea, and M. A. 
Al-antari, "A hybrid deep learning skin cancer prediction framework," 
Engineering Science and Technology, an International Journal, vol. 57, 
Sep. 2024, Art. no. 101818, https://doi.org/10.1016/j.jestch.2024. 
101818. 

[24] M. Saeed, A. Naseer, H. Masood, S. U. Rehman, and V. Gruhn, "The 
Power of Generative AI to Augment for Enhanced Skin Cancer 
Classification: A Deep Learning Approach," IEEE Access, vol. 11, pp. 
130330–130344, 2023, https://doi.org/10.1109/ACCESS.2023.3332628. 

 


