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ABSTRACT 

Machine Learning (ML) has become an essential tool for solving complex problems in electrical 

engineering. A major application of ML algorithms in this field is the fault categorization in transmission 

lines. ML models take into account the presence of faulty voltage or current while the fault is occurring in 

order to identify and categorize it. This research confirms the efficiency of ML algorithms by utilizing a 

faulted transmission line that was simulated in the MATLAB/Simulink environment. The main fault 

classification techniques implemented in this study are Decision Tree (DT) and Random Forest (RF). The 

Receiver Operating Characteristic (ROC) curve, the Precision-Recall (PR) curve, and the confusion matrix 

demonstrate the efficiency of the proposed techniques, which are able to optimize the fault categorization 

and increase both precision and effectiveness by accurately detecting faults within the transmission lines. 

Keywords-fault classification; machine learning; random forest; transmission lines 

I. INTRODUCTION  

The continuous and reliable supply of electricity is critical 
today, and transmission lines, which form the backbone for 
distributing electricity over large geographical areas, are 
considered a critical part of power systems [1-3]. The stability 
and reliability of transmission lines can be threatened by a 
number of factors, with faults being the primary concern [4]. 
Transmission line faults cover a wide range of conditions, 
including short circuits, open circuits, and line-to-ground faults 
[5]. When a fault occurs, it interrupts the flow of electricity, 
potentially causing voltage sags, power outages, and even 
damage to equipment. It is necessary to detect and mitigate 
these faults in a timely manner to ensure continuity of power 
supply and prevent cascading failures in the network [6, 7]. 
Traditionally, the identification and categorization of faults in 
transmission lines has relied on rule-based systems and 
statistical techniques. These methods often use predefined 
thresholds or expert-based decision rules, knowledge, or 
historical data to identify and classify faults [8, 9]. While these 
approaches are effective in certain scenarios, they have 
significant limitations, especially when dealing with the 
complexity and uncertainties inherent in real power systems. 
Standard fault detection and classification approaches cannot 

capture the full range of fault states or changes in system 
behavior [10]. In addition, these methods have difficulty 
adapting to changes in power conditions or to the different 
characteristics of different types of faults [7]. As a result, there 
has been a growing interest in exploring alternative approaches 
that can overcome these limitations and improve the accuracy 
of fault categorization [9]. 

Traditional methods for fault classification in transmission 
lines, such as impedance-based methods, wavelet transform-
based methods [6, 11, 12], and artificial intelligence-based 
methods [13-15], are mainly based on mathematical modeling 
and signal processing techniques [6, 16]. While effective in 
certain scenarios, they have inherent limitations. In particular, 
those that rely on signal processing techniques can be 
vulnerable to noise and disturbances in the power system [17, 
23]. Recent advances in Machine Learning (ML) based fault 
classification techniques have changed this dramatically and 
offer significant advantages over traditional methods [18]. 
Some of the most prominent techniques are Decision Trees 
(DT), which partition data into branches based on feature 
conditions, and Random Forests (RF), which combine multiple 
decision trees to improve accuracy [12, 13, 19]. These 
techniques can handle noisy data and still produce accurate 
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results. Traditional methods may struggle to accurately classify 
complex fault scenarios, such as multiphase faults or faults 
with high fault tolerance [20]. Therefore, there is a growing 
interest in using advanced techniques such as DT and RF to 
improve the accuracy and reliability of fault categorization in 
transmission lines [17, 18, 21, 22].  

Motivated by the aforementioned literature, this paper 
proposes an ML algorithm to improve the fault classification 
accuracy of transmission lines. The main contributions of this 
paper are: 

1. ML is used to perform an efficient classification in 

transmission line faults. 

2. The performance of the proposed method is compared with 

previously proposed methods. 

3. It is concluded that the proposed method provides better 

accuracy than other methods. 

II. PROPOSED METHOD 

A. Studied System 

The MATLAB Simulink model of the proposed system is 
shown in Figure 1. The model consists of a single generating 
unit and a single RLC load of 100 MW and 10KW, 
respectively. Various faults on the transmission line, such as 
Line to Ground (LG), Line to Line to Ground (LLG), and Line 
to Line to Line (LLL), are created by using a fault block. 
Specifically, the dataset for training and testing the system is 
obtained by introducing the faults line-to-line (AB, BC, CA), 
line-to-ground (AG, BG, CG), double line to ground, three-
phase and no fault on the transmission line and collecting the 
current and voltage values. 

 

 

Fig. 1.  Single line diagram of the proposed system. 

B. Model Simulation and Data Generation 

To perform effective fault classification, the training and 
testing data must contain enough samples, which requires 
generating large amounts of data covering different system 
conditions and faults. These data are generated using multiple 
runs of MATLAB software. The task is to classify the electrical 
faults in the system using current and voltage measurements 
from three phases A, B, and C. At the output side of the power 
system, we then collect and store the observed phase voltages 
and currents. The dataset contains features as voltages (Va, Vb, 
Vc) and currents (Ia, Ib, Ic) for the three phases. We have 
collected 2000 data points, and then labeled the data. 

C. Normalization  

This process includes cleaning, missing value handling, and 
normalization/scaling. Descriptive statistics and visualizations 
(e.g., histograms, correlation matrices) are used to understand 
the data distributions and the relationships between fault types 
and features. The process involves the steps of loading data, 
checking for missing values, defining different failure types, 
normalization, model training, and testing. Specific analysis 
includes current and voltage distributions for different fault 
types, highlighting overlaps and unique patterns, and using 
various ML algorithms for classification. 

D. Random Forest 

The RF training uses bootstrap sampling to create multiple 
subsets of the training data. Each split considers a subset of 
random features to reduce overfitting and each decision tree 
predicts fault types using the Gini Impurity given by [4]. 

Gini Impurity � 1 � ∑ p�
��

���    (1) 

where k  is the number of classes in the dataset, p�  is the 
proportion of instances in class i. The Gini Impurity measures 
the "impurity" of a node, with 0 indicating perfect 
classification. The Final Prediction in RF is given by [4]: 

Final Prediction �
�

�
� ∑ y��

�
���    (2) 

where  y��  is the prediction from the i-th tree and N  is the 
number of trees in the RF. The splits are chosen to minimize 
impurity in the fault classification nodes. Ensemble learning 
predictions from all trees are aggregated using majority voting. 
Out-of-Bag (OOB) error samples are not used during training 
are used to estimate the performance, which is evaluated using 
metrics such as Recall , Precision, Accuracy, and confusion 
matrices. Classification accuracy refers to the number of 
correct predictions made relative to the total number of samples 
that were submitted, given as [4]: 

Accuracy �
�$%

&%
    (3) 

where N'( is the number of correct predictions and T(  is the 

total number of predictions. Precision is calculated by dividing 
the total number of successful positive results by the total 
number of positive results that were predicted by the classifier 
[4, 8]: 

Precision �
&*+, -./�0�1,

&*+, -./�0�1,2345/, -./�0�1,
  (4) 

Recall  is the total number of successful positive results 
divided by the total number of applicable samples [4]. 

Recall �
&*+, -./�0�1,

&*+, -./�0�1,2345/, �,640�1,
  (5) 

The F1 � score is a measure of how accurately a classifier 
is able to identify and Recall  specific instances. It is an 
important measure of robustness of the classifier. Although 
high Precision and low Recall are ideal for classification, they 
can miss many difficult cases. The higher F1 � score , the 
better the performance of the model [4]. 

F1 � score � 2 ∗
-*,'�/�.9∗:,'455

-*,'�/�.92:,'455
  (6) 
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This approach allows for robust, accurate, and real-time 
fault classification [4]. 

III. RESULTS AND ANALYSIS 

The proposed model was analyzed based on the fault data 
generated from the simulated system. The data obtained from 
the simulation were used for training logistic regression, DT, 
K-Nearest Neighbors (KNN), and RF. Among them, DT and 
RF performed well and were therefore considered for testing 
the model. An Accuracy  of approximately 87.52% was 
obtained on the validation data.  

The Receiver Operating Characteristic (ROC) curve with 
the DT model, which is the gateway to understanding the 
classification performance of a model, is shown in Figure 2. 
The ROC curve is considered a powerful tool for evaluating 
binary classifiers. It visually represents the trade-off between 
the true positive rate and the false positive rate at various 
classification thresholds. The observations from the ROC curve 
graph are as follows: 

 Line-to-line with ground AB class (area = 0.96): This curve 
hugs the upper left corner, indicating excellent 
performance. The high Area Under Curve (AUC) indicates 
that the model effectively distinguishes this fault type from 
others. 

 Line-to-line with ground AC class (area = 1.00): A perfect 
AUC of 1.00. The model successfully detects this type of 
fault with no false positives or false negatives.  

 Line-to-line with ground BC class (area = 1.00): Another 
perfect AUC, the model is accurate in identifying this fault 
type.  

 No fault class (area = 0.96): A solid AUC, indicating 
reliable performance in detecting the normal state.  

 Macro-average ROC curve (area = 0.98): Overall, the 
model has exceptional performance in every class. 

Figure 3 illustrates the Precision - Recall  (PR) curve, an 
important tool for evaluating the performance of the 
classification model, especially when dealing with unequal 
class sizes. The PR curve shows the trade-off between 
Precision  and Recall . It should be noted that Precision  is 
important when false positives are costly, and Recall  is 
important when false negatives are critical. The observations 
from this curve are: 

 Line-to-line with ground AB class (AP = 0.80): This curve 
demonstrates a good balance between Precision  and 
Recall. An Average Precision (AP) of 0.80 suggests reliable 
performance in identifying this fault type. 

 Line-to-line with ground AC class (AP = 0.99): The model 
excels in Precision and Recall for this fault type with an 
impressive AP of 0.99.  

 Line-to-line with ground BC class (AP = 1.00): Another 
perfect score that balances Precision and Recall.  

 No fault class (AP = 0.92): Solid performance in 
discriminating normal conditions.  

 Macro-average PR curve (AP = 0.92): The model maintains 
a high AP across all classes. 

 

 

Fig. 2.  ROC curve with DT model. 

 
Fig. 3.  Precision-Recall curve with DT model. 

We can observe that with a small number of training 
examples the model works really well and the training score is 
high. As we add more examples, the training score gradually 
decreases. This is expected because the model becomes more 
generalized and less overfit to the training set. An effective 
way to determine how well a classification model works across 
multiple classes is the confusion matrix. The confusion matrix 
is the dominant and most popular technique for evaluating the 
correctness and accuracy of a classification. It also helps to 
identify the regions where the classifier has performed poorly. 
In addition, it helps determine whether the classification model 
is correct and what errors it produces. The confusion matrix 
with the DT model is shown in Figure 4. 
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Fig. 4.  Confusion matrix with DT model. 

The ROC curve with the RF model shown in Figure 5 
visualizes how well the model discriminates between different 
fault types. The observations are: 

 Line-to-line with ground AB class (AUC ≈ 1.00): This 
curve hugs the upper left corner, indicating excellent 
performance.  

 No fault class (AUC ≈ 1.00): The model excels in detecting 
normal conditions with a perfect AUC. 

 Line-to-line with ground AC class (AUC ≈ 1.00): Another 
perfect result for the model.  

 Line-to-line with ground BC (AUC ≈ 0.99): Near perfect 
score, the model effectively discriminates this type of fault. 

 Macro-average ROC curve (AUC ≈ 0.99): Overall, the 
model performs admirably across all classes. 

Figure 6 illustrates the PR curve for the RF model, which 
provides important information about how well our model 
balances Recall  (true positive rate) and Precision  (positive 
predictive value) for different types of faults. Here are the 
observations:  

 Line-to-line with ground AB class (AP = 0.78): The curve 
starts strong in Precision,  but dips slightly as Recall 
increases. This trade-off is common, as we prioritize Recall 
(capturing more true positives), Precision drops.  

 Line-to-line with ground AC class (AP = 1.00): A perfect 
AP score. The model excels in Precision  and Recall  for 
this fault type.  

 Line-to-line with ground BC class (AP = 1.00): Another 
perfect score. The model effectively discriminates this fault 
type.  

 No Fault class (AP = 1.00): Again, a perfect score. The 
model performs flawlessly in detecting normal conditions.  

 Macro-average PR curve (AP = 0.94): Overall, our model 
maintains a high AP across all classes. 

 

 

Fig. 5.  ROC curve with RF model. 

 
Fig. 6.  Precision-Recall curve with RF model. 

Figure 7 shows the confusion matrix with RF model, which 
is a detailed breakdown of predictions versus actual 
classifications for each fault type. The diagonal represents 
correct predictions (true positives and true negatives), whereas 
off-diagonal cells indicate misclassifications. Table I 
demonstrates the performance analysis for the KNN, DT, RF 
and logistic regression models. The RF model has the highest 
Precision , Recall , Accuracy,  and F1 − score,  making it the 
best model in this comparison. Logistic regression performs 
poorly in all metrics except for Precision. Therefore, it would 
be of little use for this type of dataset, and further tuning may 
be needed. 
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Fig. 7.  Confusion matrix with RF model. 

TABLE I.  PERFORMANCE ANALYSIS  

Model <==>?@=A B?C=DEDFG HC=@II 
JK

− E=F?C 

KNN 0.830478 0.841939 0.830478 0.832308 

DT 0.860076 0.862903 0.860076 0.861160 

RF  0.875275 0.875070 0.875275 0.875150 

LR 0.517273 0.700223 0.517232 0.515705 

 
Figure 8 shows the comparison of different models on the 

basis of different matrices. The Accuracy obtained by KNN is 
83%, by DT is 86%, by RF is 87% and by LR is 51%. The 
Precision values are 84%, 86%, 87% and 70% respectively. 
The Recall  values are 83%, 86%, 87% and 51%. The F1 −
score  values are 83%, 86%, 87% and 51%. The overall 
performance of RF with respect to the different matrices is high 
and therefore it is the preferred method. 

A. Comparison of RF with Existing Models 

Existing fault classification models were compared with the 
proposed RF model to highlight how well the proposed method 
performs, as shown in Table II. The most widely used method 
to date for fault classification in transmission lines is the use of 
Artificial Neural Networks (ANNs). In [13], the amount of data 
was small and the number of classes considered was 3, with an 
Accuracy of 84.40%. In [19], ANNs were also used and the 
number of classes considered was 11. The Accuracy obtained 
was only 70%. The proposed system was tested on 2000 data 
points and 7 classes were considered. The Accuracy obtained 
was 87.52% which is better than all the others. 

TABLE II.  COMPARISON OF RF WITH OTHER MODELS 

Reference Algorithm 
Data (training 

& testing) 

No. of classes 

considered 

<==>?@=A 

(%) 

Fault Classification (Multiclass) 

[13] ANN 208 & 44 3 84.40 

[19]  ANN --- 11 70.00 

Proposed RF 1400 & 600 7 87.52 

Proposed DT 1400 & 600 7 86.00 

 

Fig. 8.  Comparison of various models on different matrices. 

IV. CONCLUSION 

In this research, a machine learning algorithm for fault 
classification in transmission lines was developed, using real-
time current and voltage data. The transmission line currents 
and voltages, acquired using MATLAB/Simulink, were used 
for training and testing the investigated models. The 
transmission line currents and voltages were used to classify 
the faults as a three-phase ground fault, a double line-to-ground 
fault, and a line-to-ground fault. The classifiers, such as logistic 
regression, K-Nearest Neighbors (KNN), Decision Tree (DT), 
and Random Forest (RF) were considered for training the 
model and their performance was evaluated using metrics such 
as Accuracy , F1 − score , Recall  and Precision . The results 
revealed that the RF model performed better than the others. 
The RF algorithm is computationally efficient, reliable, and 
improves the classification accuracy compared to other existing 
methods. MATLAB efficiently handled the data, which 
allowed preprocessing for both training and testing the model 
in a simulated environment. 
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