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ABSTRACT 

In this study, a novel method is developed to help the mobile robot system accurately detect and recognize 

the color of a ball in environments with light disturbances using deep learning. The YOLOv8 algorithm is 

applied to detect the ball and identify its color. The effectiveness of the algorithm is tested in various 

lighting conditions and when the balls are inside a silo and when they are outside. The developed algorithm 

identifies balls even when they are partially obscured by shadows. 
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I. INTRODUCTION  

Object detection plays a critical role in computer vision, 
allowing systems to effectively analyze and interpret their 
surroundings. It is essential for a variety of applications, 
including robotics, security, facial recognition, medical 
diagnostics, and autonomous vehicles. The advancements 
driven by Industry 4.0 have highlighted the increasing 
significance of Artificial Intelligence (AI) in these fields. 
Object detection technology has made significant progress 
leveraging Deep Learning (DL) and Machine Learning (ML). 
However, challenges remain, particularly when applied to real-
world conditions that involve occlusions, varying lighting, and 
cluttered environments [1-3]. 

Image processing is fundamental for enabling robots to 
assess and interact with their surroundings. This technology 
supports vital functions such as navigation, surveillance, object 
detection, and human-robot interaction. These advancements 
not only improve the efficiency of robotic systems but also 
broaden their applicability in sectors such as healthcare, 
education, and customer service, leading to innovative 
solutions for assistive technologies and automated services [4-
6]. 

Despite these improvements, object detection systems still 
face challenges. Among the most widely used models, the 
YOLO (You Only Look Once) series is renowned for its 

balance between speed and accuracy. Early versions, like 
YOLOv3 struggled with small object detection and handling 
overlapping instances due to their reliance on high-level feature 
representations [7]. YOLOv4 introduced Cross Stage Partial 
Networks (CSPNet) improving small object detection and 
computational efficiency, but deploying it on resource-
constrained devices remains a challenge [8]. YOLOv5 refined 
the architecture and increased inference speeds, though it still 
struggles in environments with significant noise or occlusion 
where object boundaries become less distinct [9-10]. 

Newer versions like YOLOv8 and YOLOv10 try to address 
these challenges. YOLOv8 introduced state-of-the-art 
innovations, including a CSPDarknet backbone, anchor-free 
detection, and enhanced feature fusion techniques making it 
highly effective for real-time applications requiring both speed 
and accuracy [11-12]. YOLOv10 offers dual assignment 
strategies that improve training efficiency and inference 
performance. A notable advancement in YOLOv10 is its 
elimination of Non-Maximum Suppression (NMS) simplifying 
the detection process and increasing efficiency in practical 
applications [13-15]. 

This study presents a DL approach based on YOLOv8 to 
detect spherical objects and identify their colors under 
challenging conditions. The proposed method demonstrates 
real-time processing capabilities achieving frame rates of 25–
30 fps while effectively adapting to various environmental 
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conditions. Experimental results confirm the method's 
robustness across different lighting scenarios including low 
light, standard illumination, and bright outdoor settings. These 
findings demonstrate the potential of this algorithm for 
deployment in dynamic resource-constrained environments 
[16-17].  

II. REAL-TIME SYSTEM FOR DETECTING BALL 

COLORS 

A. System Framework 

The proposed algorithm is shown in Figure 1. Initially, the 
system begins with a 2D camera. The input image is resized to 
640×640 pixels. After that, the ball is detected using the 
YOLOv8 model. If an object is identified as a ball, YOLOv8 
provides the bounding boxes and labels corresponding to the 
ball's actual color. If not, the system continues to search for the 
ball. 

 

 

Fig. 1.  Algorithm flowchart. 

B. YOLOv8 Algorithm  

YOLOv8 provides users with 5 AI neural network models 

used to detect objects: YOLOv8n (nano), YOLOv8s (small), 

YOLOv8m (medium), YOLOv8l (large), and YOLOv8x (extra 

large). In addition, Ultralytics also provides ML models to 

solve problems such as segmentation, object detection, 

classification, pose estimation [18-22]. 
Table I provides a detailed comparison of the YOLOv8 

model variants in terms of size, number of parameters, and 
computational complexity (measured in FLOPs). It is used to 
analyze the trade-offs between model efficiency and 
performance enabling users to choose the appropriate version 
based on the specific requirements of their application such as 
speed, accuracy or hardware limitations. 

 

TABLE I.  COMPARISON OF YOLOv8 MODELS  

Model 
Size 

(pixels) 
Model’s size 

Params 

(M) 

FLOPs 

(B) 

YOLOV8n 640x640 6.4 MB 3.2 8.7 

YOLOv8s 640x640 22.0 MB 11.2 28.6 

YOLOv8m 640x640 50.9 MB 25.9 78.9 

YOLOv8l 640x640 85.7 MB 43.7 165.2 

YOLOv8x 640x640 133.7 MB 68.2 257.7 

 

The YOLOv8 series demonstrates a clear trade-off between 
computational complexity and model performance. Smaller 
models like YOLOv8n are compact (6.4 MB in size) and have 
fewer parameters (3.2 million) and FLOPs (8.7 billion) making 
them well-suited for applications requiring faster processing 
and lower computational costs. On the other hand, larger 
models such as YOLOv8x provide significantly higher 
accuracy but come with a substantial increase in size (133.7 
MB), parameters (68.2 million), and FLOPs (257.7 billion), 
resulting in slower inference times. This trade-off allows users 
to select the most suitable model based on specific 
requirements such as prioritizing real-time performance or 
achieving maximum detection accuracy. 

YOLOv8 achieves superior performance through a 
carefully designed architecture consisting of three main 
components, namely backbone, neck, and head. The backbone 
uses an enhanced CSP-Darknet53, which improves feature 
extraction by efficiently processing gradient flows and 
reducing computational complexity. The neck refines the 
extracted features enhancing their representational power for 
robust object detection. Finally, the head processes these 
features to classify objects and determine their bounding boxes 
with high accuracy. Advanced techniques such as CIF, an 
efficient data structure, streamline intermediate feature storage 
and processing, while OAM a sophisticated optimization 
algorithm, boosts the overall performance of the network. 

1) Architectural Enhancements 

YOLOv8 uses a refined version of the CSP-Darknet53 
backbone. This improves feature extraction by better handling 
gradient flow and reducing computational complexity. 

2) Loss Function 

YOLOv8 has three kinds of loss as bounding box 
regression loss, objectness loss, and class prediction loss. The 
overall loss is determined by their summation: 

� �  �������� � ���	���	 � �
���
��   (1) 

where ���� , ���	 , �
��  are hyperparameters that balance the 

contributions of each component to the total loss. ���� �
 
 �����ℎ_�1���� , �����

 for each predicted bounding box. It 

calculates the loss 
 �� ��!� , �����
 between the predicted 

coordinates (��) and the ground truth coordinates (�). ���	 �
 
 �� ��!� , �����

 for each anchor. It calculates the binary cross 

entropy loss between the predicted objectness score (�!) and the 

ground truth objectness (� ). ���� �  
 � �"̂� , "���
 calculates 

the categorical cross entropy loss between the predicted class 
probabilities ("̂) and the ground truth class label (") for each 
positive anchor. 
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III. EXPERIMENTAL RESULTS 

A. Training Model 

To highlight the optimization and advancements of 
YOLOv8 over YOLOv7 [23], we conducted a performance 
comparison by training both models on the same dataset under 
identical conditions. The dataset consisted of 4,000 images of 
balls, including 500 sourced from Google and 3,500 captured 
using our camera. This ensured that both models had a 
consistent and equal foundation for training and evaluation. 
The training process for both YOLOv8 and YOLOv7 was 
executed on Google Colab, leveraging its computational 
resources to ensure efficiency and reproducibility. By 
maintaining identical training parameters and datasets, the 
comparison provided unbiased insights into the capabilities of 
each model. 

The results clearly demonstrated YOLOv8's superior 
optimization. It consistently outperformed YOLOv7 across key 
metrics, including mean Average Precision (mAP), inference 
speed, and detection accuracy, particularly under challenging 
conditions such as poor lighting, varying object sizes, and 
occlusions [24]. These findings underscore the advancements 
in YOLOv8's architecture and loss function, which allow it to 
achieve higher accuracy and faster processing while 
maintaining efficiency. This makes YOLOv8 a more effective 
solution for real-time ball detection applications. 

B. System Setup and Performance Evaluation 

The hardware system, as shown in Figure 2, consists of a 
lightweight and modular frame designed to house the key 
components needed for object detection and manipulation 
tasks. A high-definition camera is positioned at an optimal 
height to capture environmental images, serving as the primary 
input for the object detection system. A laptop is integrated into 
the robot's structure, functions as the central processing unit 
handling real-time data processing and inference using pre-
trained deep learning models. 

The robot is equipped with multiple actuators and a 
gripping mechanism specifically designed for interacting with 
detected objects. Its locomotion system features 
omnidirectional wheels, allowing for smooth and precise 
movement across a variety of terrains. Additional sensors were 
incorporated to facilitate obstacle avoidance and navigation, 
enhancing the robot's adaptability in dynamic environments. 
The system is powered by a portable battery pack to ensure 
continuous operation during tasks. The proposed algorithm was 
executed on a system featuring 8 GB of RAM, an 11th Gen 
Intel(R) Core(TM) i5-11400H @ 2.70GHz processor, and an 
NVIDIA GeForce 3050 Laptop GPU. Image capture was 
performed with the Hikvision DS-U02 full HD 1080P webcam. 
The algorithm was implemented in Python 3.8 utilizing the 
OpenCV 4.0.7.68 and NumPy libraries for processing and 
computation. This hardware and software configuration is 
optimized for real-time object detection and task execution 
ensuring reliability and performance in controlled 
environments. 

 

 

Fig. 2.  The robot system integrates image processing and AI. 

  

  

  

Fig. 3.  Test results in six cases. 

The performance of the algorithm was evaluated under 
varying lighting conditions, including low light, normal light, 
and bright light as well as in two distinct scenarios: when the 
ball was located inside and outside a silo. The test results 
demonstrate the algorithm's ability to detect and classify balls 
accurately across different environmental settings. Each case in 
Figure 3 illustrates specific scenarios highlighting the 
robustness of the detection system under diverse conditions.  

Figure 4 shows the confusion matrix of Yolov8 for the 
testing dataset. Figure 5 shows the change in loss metrics and 
the performance of the YOLOv7 model over epochs. The plot 
includes box loss, objectness loss, and classification loss on 
both training and test sets. In addition, precision and recall 
plots on the test set are also presented, along with mean mAP at 
the 50% threshold and from 50% to 95%. The dotted lines on 
the graph are smooth averages, highlighting the general trend 
of these values during model training and evaluation. The 
losses (Boxes, Objects, Classifiers) are decreasing for both the 
training and validation sets, showing that the model is learning 
effectively.  
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Fig. 4.  Confusion matrix of YOLOv8. 

 

Fig. 5.  Training results of the YOLOv7 model. 

The evaluation indexes (Precision, Recall, mAP) have all 
improved proving that the model's performance in object 
recognition tasks is improving. There is some initial fluctuation 
in the validation set's object loss, which may indicate 

overfitting in the early stages, but then the loss decreases, 
suggesting the possibility of conceptual overfitting. 

Figure 6 illustrates the training process and performance 
metrics of the YOLOv8n model. The image displays the loss 
and performance plots of the DL model over a series of training 
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epochs. It includes metrics such as box loss, classification loss, 
and distance prediction loss alongside key evaluation measures 
like precision and recall rates on the test set. The dotted lines in 
the graph represent smooth averages, emphasizing the overall 
trends in these values throughout the training process. These 
results provide insight into the model's optimization and its 
ability to generalize effectively to unseen data. The losses 

(Box, Classification, DFL) are gradually decreasing, proving 
that the model is learning effectively and optimizing well. The 
evaluation indexes (Precision, Recall, mAP) all increase and 
remain stable, showing that the model is improving in 
predicting and classifying objects. There were no obvious signs 
of overfitting as the training and validation metrics improved 
uniformly. 

 

 

Fig. 6.  Training results of the YOLOv8n model. 

It can be concluded that YOLOv8 is more efficient and 
more suitable for real-time applications. The training images of 
the YOLOv8 model provide clearer and more detailed chart 
labels, additional smooth lines for better trend observation, and 
include important indicators such as DFL Loss. Furthermore, 
performance indicators are more clearly defined, resulting in a 
more stable and interpretable pattern. This makes it easier to 
monitor, analyze, and evaluate model performance compared to 
earlier stages. 

IV. CONCLUSION 

This study successfully implemented and assessed the 
YOLOv8 model for object detection tasks, particularly 
focusing on the detection and classification of balls in diverse 
environments. The training results and evaluation metrics 
highlight the model's ability to learn effectively and generalize 
well to unseen scenarios. The performance plots reveal 
consistent reductions in losses (Box, Classification, and 
Distance Prediction Loss) throughout the training process, 
signifying efficient optimization without evidence of 
overfitting. Additionally, evaluation metrics such as Precision, 
Recall, and mean Average Precision (mAP) showed steady 
improvement and stability, further demonstrating the model's 
accuracy and reliability in object detection. 

Compared to its predecessor YOLOv7, the YOLOv8 model 
demonstrates significant advancements across multiple 
dimensions, making it a superior choice for real-time object 

detection tasks. First and foremost, YOLOv8 achieves more 
stable and consistent performance metrics, as evidenced by 
smoother and more predictable training and validation loss 
curves. These trends indicate better convergence during 
training and reduced fluctuations, which simplify analysis and 
monitoring of the training process. YOLOv8 also demonstrates 
substantial improvements in inference speed, resulting in an 
optimal balance between high detection accuracy and reduced 
computational complexity, making it particularly valuable for 
real-time applications. The model’s faster convergence and 
reduced overfitting compared to YOLOv7 ensure efficient 
training with minimal resource consumption. 

In addition to these technical improvements, YOLOv8's 
ability to handle diverse, challenging environments further 
underscores its advancement. The model maintains high 
detection accuracy even in scenarios involving poor lighting, 
occlusions, and scale variations, where YOLOv7 struggles to 
maintain robustness. These enhancements in precision, 
efficiency, and overall robustness solidify YOLOv8 as a more 
reliable model for modern object detection tasks. 

Finally, the findings from our comparative study validate 
YOLOv8's efficiency and robustness in tackling real-world 
object detection scenarios. The enhanced performance in both 
training and testing makes it an ideal solution for applications 
in industrial automation, robotics, environmental surveillance, 
and beyond. Moving forward, future research could build on 
these results by exploring multi-class object detection, 
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optimizing computational efficiency, and incorporating 
advanced methodologies to further improve YOLOv8's 
capabilities in dynamic, complex environments. In conclusion, 
YOLOv8 not only offers significant advancements in detection 
accuracy, speed, and robustness but also ensures faster training, 
making it a more effective and reliable choice for real-time 
applications. 

DATA AVAILABILITY 

Training and testing data and results are available from the 
authors upon request. 
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