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ABSTRACT 

This study proposes a heuristic algorithm to balance Robotic Assembly Lines (RAL). A flexible line is 

assumed in which robots can be allocated to any station, perform any task, and have fixed setup costs. To 

consider both robot allocation costs and limiting the number of stations, the current work aims to 

minimize the system cost, which includes new station and robot allocation costs. It evaluates the 

performance of the algorithm with a large set of randomly generated samples and conducts statistical 

analyses to summarize, compare, and draw conclusions. The experimental results demonstrate the efficacy 

of the proposed algorithm in addressing large-scale problems in a reasonable timeframe. 

Keywords-robotic assembly line balancing; heuristic algorithms; integer programming 

I. INTRODUCTION  

The field of Simple Assembly Line Balancing Problems 
(SALBP) has been the focus of scholarly inquiry for over fifty 
years. In response to the complexity of these problems, 
numerous variants have been developed, and researchers and 
manufacturers have proposed a range of resolution methods. 
This particular interest stems from the necessity to extend the 
field and consider multiple factors concurrently to adapt to 
real-life production systems. In the highly competitive global 
marketplace, industries have been compelled to modify their 
operational strategies, adopt cutting-edge technological 
advancements, and align with the principles of Industry 4.0 by 
incorporating robotics and automated equipment into their 
production systems. The growing significance of robots has 
had substantial ramifications for industrial applications and 
individual lifestyles [1-3]. Consequently, the demand for RAL 
has witnessed a substantial surge in recent decades. The 
Robotic Assembly Line Balancing Problem (RALBP) has 
emerged as a prominent branch of the SALBP. The RALBP 
can be defined as the optimization of the production process by 
the simultaneous assignment of tasks and robots to the line to 
increase production efficiency. The field of robotics and 
equipment assignment problems has garnered significant 
interest from researchers and manufacturers alike, leading to 
the publication of numerous academic papers since the 
subject's inception [4]. Analogous to the SALBP, the RALBP 
can be classified according to various characteristics, including 
task time, layout structure, objective criteria, and solution 
methodology [5]. This section aims to provide a concise 

overview of the extant literature on the subject. A substantial 
proportion of these earlier studies involved simple extensions 
of SALBP, wherein the term equipment was substituted for 
robots. Some researchers considered parallel layouts to enhance 
line flexibility and capacity [6-9]. For instance, authors in [10] 
examined the Robotic Parallel Assembly Line Balancing 
Problem (RPALBP). They explored the potential of iterative 
beam search and cutting algorithms as solutions to this 
problem. Large-scale and high-volume product manufacturing 
frequently uses two-sided assembly line layouts. Metaheuristic 
methods have been proposed to address these balancing 
problems and have been compared with existing exact or 
heuristic algorithms [11-13]. In contrast, authors in [12] sought 
to address the two-sided lines by simultaneously minimizing 
energy consumption and cycle time. Comparative studies were 
also conducted for the robotic U-shaped assembly line 
balancing problems [14-16]. The integration of human 
flexibility and robot productivity has been identified as a means 
to enhance the efficient usage of resources in the context of line 
balancing. Literature has also explored the problem of 
assembly line balancing through human-robot collaboration 
[17-21]. 

Authors in [22] have previously indicated that exact and 
heuristic methods can be employed to solve RALBP. However, 
the intricate nature of the problem poses significant challenges 
in terms of its resolution using exact methods within a 
reasonable timeframe, even for the most simplified version of 
the problem. The extant literature indicates that exact methods, 
such as branch and bound, demonstrate optimal performance 
primarily on problems of a limited size [23-25]. Consequently, 
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a significant proportion of studies have advocated for the 
utilization of heuristic methods [26-28], which have been 
developed with metaheuristic algorithms and those that employ 
the particle swarm optimization method, a population-based 
metaheuristic [29, 13, 14]. Consequently, the solutions to 
RALBP have the potential to enhance system productivity, 
product quality, and safety in manufacturing environments, 
thereby ensuring competitiveness in the market. The 
multifaceted objectives of manufacturers and the varied 
structures of production systems create a fertile ground for 
research. The study's objective is twofold: first, to develop a 
novel approach to address the challenges posed by the intricate 
nature of the problem and second, to make a meaningful 
contribution to the extant literature. This study proposes a 
novel heuristic approach for RALBP, with the objective of 
minimizing the total cost associated with the number of stations 
and robots. The proposed algorithm accounts for several 
realistic constraints. A notable advantage of the proposed 
algorithm is its capacity for facile modification by users, hence 
facilitating the incorporation of additional constraints. This 
feature enables the execution of sophisticated analyses, such as 
sensitivity analysis, parametrization of the problem, and 
resolution when problem instances are subject to variability, a 
common occurrence in industrial processes. As previously 
mentioned in this section, to the best of the authors’ 
knowledge, the existing algorithms in the literature do not offer 
the same adaptability and are less designed for extensions. 

II. PROBLEM DEFINITION AND MATHEMATICAL 
MODEL 

The objective is to allocate tasks to stations, along with the 
requisite robots for processing, aiming to minimize the system 
cost, which encompasses the expenses associated with station 
opening and robot allocation. Given the intricate nature of 
RAL, characterized by complex structures, chaotic behaviors 
[30], and a multitude of variations, the problem is constrained 
by the assumptions that the cycle time is known and constant, 
the task times are deterministic and dependent on the robot, 
each task requires one robot, robot costs are constant for each 
station and include setup, purchasing, maintenance, and 
consumption costs, and any robot can be assigned to any 
station without limitations on the number or placement of 
robots. To simplify the problem, it is also assumed that all 
other variables, costs, and times are included or negligible. 
While it is acknowledged that any robot can execute all tasks, it 
is postulated that there exists a negative correlation between 
task times and robot costs. The objective of this study is to 
minimize the total system cost, which is expressed as: 

�� =  ∑ ∑ �����	 
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where C is the cycle time, S is the number of workstations, n is 
the number of tasks to be assigned, r is the number of robots, 
��� is the processing time of task i, when performed by robot j, 
���  is the cost of robot j, SC is the station opening cost,  

���	 = $1        if task � is performed in station � by robot #
0        otherwise                                                                  , 

 ��	 = $ 1         if robot # is assigned to workstation �
0         otherwise                                                        , 

where � = 1, … , n , # = 1, … , r  , � = 1, … , S. 
Constraint set (2) guarantees that each workstation is 

assigned to only one task. The capacity constraint set (3) 
assures that the capacities of the stations are not exceeded. 
Constraint (4) imposes a limit on the minimum number of 
workstations required to complete all tasks, while (5) 
guarantees that the precedence relations are respected for all 
tasks and (6) stipulates that if a task is processed by a 
workstation, then the task's robot is assigned to that 
workstation. 

III. SOLUTION ALGORITHM 

This study proposes a heuristic algorithm, a fast 
constructive algorithm driven by a 2-opt method. The 
algorithm facilitates the attainment of a solution in a 
substantially reduced processing time. The algorithm is 
delineated in three primary phases. Initially, the data 
pretreatment phase is undertaken, subsequently constructing 
the initial partial solution. The improvement phase is then 
applied, enabling the diversification of the search and the 
eventual completion of the solution. 

A. Pretreatment 

This phase involves a rapid prioritization process to prepare 
the data for the subsequent construction phase. By definition, 
tasks can be addressed by at least one robot, though in most 
cases, they are executed by multiple robots. The initial step 
entails the establishment of a selection criterion to determine 
which robot will be assigned to each task. It is possible to 
define different selection rules during this phase. The 
implementation of a sequential approach is proposed, wherein 
the available robots are arranged in an ascending order based 
on their designated processing times. To this end, the robots are 
indexed from 1 to r based on the increasing order of their 
processing times. For any given task i, the robots are then 
indexed as j1…, jr, such that tij1 ≤ … ≤ tijr. It is imperative to 
emphasize that r signifies the maximum number of robots. 

B. Construction 

In this phase, tasks are allocated to robots according to their 
pretreatment order, and a group is formed for each robot, 
denoted by Gj. In the event that tasks exhibit precedence 
relationships, the objective is to assign them to the same group, 
therefore considering them as a single entity. The associated 
time for this entity is defined as the total time required for the 
same robot to execute the tasks. The objective of this grouping 
is to divide the primary problem into smaller components, 
thereby facilitating a more straightforward approach to the 
solution. The groups and the tasks assigned to each group are 
then considered individually. This approach ultimately reduces 
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the complexity of the main problem to r SALBPs. The total 
time allocated to robot j is �;<=>#? = ∑ @�����

A
��� , where @�� is 1 

if task i is assigned to robot j and 0 otherwise. So, the minimum 
number of stations needed for each group is denoted by S>#? 
and defined as S>#? = ⌊�;<=>#?/C⌋. The objective function is 
associated with the total time and the allocated robot for each 
task, as well as the costs of the stations and robots required. It 
is even more appropriate to say that ∑ S>#? × ���



��� +

∑ S>#? × ��

���  is a lower bound to the optimal solution. 

Subsequent to the task of grouping, an allocation approach is 
employed for the purpose of assigning the groups to the 
stations. Given the fact that the allocation approach affects the 
efficiency of the main approach, it is considered to be at the 
core of the algorithm. Two allocation approaches are put forth 
for consideration. The first approach is a greedy algorithm that 
considers one station at a time. The second approach seeks a 
balanced allocation among the stations of each group Gj. 

 The initial approach entails the consideration of one station 
at a time, with the objective of assigning tasks while 
minimizing idle time. This approach is characterized by its 
stability and efficiency. For group Gj, initially, there are S(j) 
stations, with robot j being allocated to each. The algorithm 
commences with the assignment of tasks from group G1 and 
progresses sequentially until all the available groups have 
been covered (up to a maximum of r groups). Within each 
group, tasks are prioritized based on their processing times, 
with the objective of minimizing the idle time of the current 
station. In the event that no tasks from the current group can 
be allocated to the current station, the next station in the set 
S(j) is opened, and the process is repeated until all S(j) 
stations have been processed. Subsequent to the assignment 
of all groups, any residual tasks, if applicable, are addressed 
in the final phase of the algorithm. This approach is 
founded on a constructive method applied to a single station 
at a time, which can be assimilated to a greedy algorithm 
employed for the stations, yet in a sequential manner. 
Greedy algorithms are recognized for their efficiency and 
expediency in general. In the current study, this approach 
leads to a good optimization of the first stations relative to 
the later ones, which can be relatively corrected and 
improved globally in the final phase. 

 The second approach is designed with a strong emphasis on 
equally balancing the stations. The algorithm considers 
groups and the corresponding stations simultaneously and 
assigns tasks (always considering the precedence rules) to 
the stations in a descending order of the idle times of the 
stations. In summary, tasks are allocated with the objective 
of minimizing the maximum idle time among all stations 
within each group, denoted by Gj. The objective is to 
distribute and balance the load of the stations as uniformly 
as possible, drawing inspiration from well-known 
combinatorial optimization problems of type knapsack. The 
steps of certain algorithms draw inspiration from the binary 
knapsack-sharing problem resolution, where the 
fundamental principle remains the distribution of a global 
capacity among different groups [31]. 

C. Final Phase 

The current solution is incomplete. Prior to the completion 
of the construction of the proposed solution, an improvement 
procedure is applied. This improvement procedure is based on 
a two-stage swapping procedure of type 2-opt. The first stage 
involves a 2-opt among the tasks that have already been 
assigned, while the second stage involves a 2-opt among the 
tasks that have been assigned and those that have not been 
assigned yet. It is important to note that both stages of this 
procedure result in an enhancement of the current solution, 
thereby reducing the total cost. The swapping of tasks between 
the stations enables the application of perturbations to the 
structures of some stations, primarily to change tasks to stations 
with robots different from the initially attributed robot and 
following the initially defined order of robots. In the 
subsequent stage, representing the final improvement step, the 
assignment of the remaining tasks, if any, is finalized. To 
accomplish this, the overall time for all remaining tasks is 
collected, and the minimum number of stations required to 
accommodate all tasks is determined. At this juncture, the 
attention is turned to the construction phase groups, which were 
initially assigned. To optimize the usage of the available 
capacity, stations that retain sufficient residual time for the 
remaining tasks are incorporated. The allocation of these 
stations is determined by the availability of the robot(s) 
assigned to each station and the robot allocated to the tasks in 
the construction phase. To ensure precision, an extensive tree is 
employed, encompassing all potential outcomes for each task. 
However, as the process progresses, the optimal alternatives are 
retained, enabling efficient navigation through the construction 
phase. It is evident that the tree search conducted at the 
culmination of the algorithm is a beam search algorithm 
applied exclusively to the reduced instance of the problem, 
which corresponds to the remaining items following the 
execution of the algorithm's earlier steps. The problem at hand 
is characterized by a complex structure and two dimensions, 
namely the number of stations and robot costs, which must be 
considered simultaneously. To overcome this structure and 
avoid eliminating viable solutions, the best l feasible solutions 
obtained through the combination of the robots are considered. 
Half of these solutions (l/2) correspond to the lowest time, and 
the remaining half to the lowest cost. The value of l, which is a 
predefined number of solutions, is examined in the subsequent 
section. 

IV. RESULTS AND DISCUSSION 

This section will discuss the algorithm's primary findings, 
which were coded in C++ and tested on the AUM-Phenix high-
performance computing facility. The AUM-Phenix facility is a 
state-of-the-art system known for its exceptional processing 
power and speed. The facility consists of ten Dell PowerEdge 
R730 servers, each of which is equipped with an Intel Xeon 
E5-2698 v3 2.3GHz processor. To carry out the performance 
analysis, random problem instances were generated. A 
comprehensive summary of the outcomes is presented, 
accompanied by a detailed discussion that explores the 
efficiency and behavior of the algorithm in addressing 
problems of varying dimensions. This analysis is supported by 
rigorous statistical examinations. The distribution of the 
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processing times follows a uniform distribution with 
parameters [5, 20], while the distribution of robot costs follows 
a uniform distribution with parameters [20]. The number of 
robots available for each task varies between six and ten, 
reflecting real-world scenarios. The station data are also 
generated randomly but remain indexed on the overall task 
data. To this end, two random values are employed, designated 
as x1 and x2, which adhere to a uniform distribution with the 
parameters [5, 20]. The cycle time is defined as the sum of all 
the minimum times required to complete each task, divided by 
x1. The cost of the station is determined randomly as the 
median cost of all the robots multiplied by x2. The production 
lines encompass a wide range of tasks, from 50 to 500, 
ensuring the direct applicability of this study’s findings to 
diverse industrial settings. To ensure the reliability of the 
findings, the data are made more realistic by considering 
precedence constraints for 20% of the tasks, a common 
occurrence in practical applications. For each problem size and 
number of robots, the current work generates m = 4 random 
problem instances. The determination of lower bounds on the 
number of stations and total cost, LB(Snr) and LB(TCnr), for 
each problem instance is achieved through the calculation of 
the minimum number of stations required to complete the tasks 
and the assignment of the robot with the lowest cost to each 
station. This approach entails the relaxation of additional task-
related constraints, including precedence, time, and resource 
limitations on task execution. While the solution may not be 
feasible, it serves as a robust metric for assessing the 
performance of the algorithm. The random problems 
demonstrate that a significant proportion of the solutions is not 
feasible but they provide an excellent indicator to measure the 
algorithm's performance. To calculate the lower bound on the 
total cost, the minimum number of stations is considered and 
the robot with the lowest price is allocated to each station. This 
approach enables the disaggregation of some of the constraints. 
Through the analysis, the attained solution is compared to the 
obtained lower bound in terms of the number of stations and 
cost. Table I offers a synopsis of the experimental outcomes. 
The first two columns present, respectively, the size and the 
number of robots considered in the generated instances. 

The performance variables are defined by two statistics: the 
average difference in the number of stations, F�GGGG , and the 
average ratio of each solution relative to the lower bound, HG. 
F�GGGG is the average difference between the algorithm's solution 
and the one provided by the lower bound for each combination 
of categories (a couple of values of the number of tasks n, and 
the number of robots, r) and is calculated as: F�GGGG =
�
I ∑ >S�� − LB>S��? ?I

� , where Snr is the number of stations 

obtained by the approach. As portrayed in Table I, columns 3 
and 5 present the mean values for the two approaches 
delineated in the construction phase. Finally, columns 4 and 6 
present the average performance of the algorithms' solutions 
for the problem instances generated for each category. The 
latter performance value is calculated as the ratio of the 
algorithm's solution divided by the corresponding lower bound 

of the instance HG = �
I ∑ MNOP

QR>MNOP?
I
� . This performance indicator, 

which must be greater than or equal to one, serves as an 
objective metric for evaluating the efficiency of the algorithm. 

Solutions that closely approach one will demonstrate optimal 
performance. A comparison of the mean ratios of the solutions 
reveals that approach 1 exhibits superior performance for 
problem instances of small size (n = 50, r = 6, 8, and n = 100, r 
= 6), while approach 2 demonstrates superiority over all other 
pairs. It is evident that the second approach exhibits superiority 
over the first in terms of the mean discrepancy in the number of 
stations. Furthermore, the second approach demonstrates 
enhanced stability in comparison to the initial approach. The 
initial approach is more sensitive to the nature of the instances 
tested, and in the improvement phase (2-opt), it exhibits a 
decline in efficiency when a substantial number of priority 
rules are present. In contrast, the second approach leverages the 
structure of the grouping procedure, enhancing its efficiency, 
while the swapping approach (2-opt) offers additional 
improvements. 

TABLE I.  SUMMARY OF THE ALGORITHM 
PERFORMANCE 

  Approach 1 Approach 2 

n r F�GGGG HG F�GGGG HG 
50 6 0 1.05 0 1.10 
50 8 0.25 1.15 0 1.17 
50 10 0.25 1.14 0 1.12 
100 6 0 1.05 0 1.06 
100 8 0.25 1.12 0 1.10 
100 10 0.25 1.16 0 1.11 
250 6 0.25 1.13 0 1.07 
250 8 0.25 1.19 0 1.14 
250 10 0.25 1.16 0.25 1.12 
500 6 0.25 1.13 0 1.08 
500 8 0.25 1.14 0 1.07 
500 10 0.25 1.11 0.25 1.07 

 
In addition to calculating the performance averages and 

providing support for the initial findings, this study conducted a 
three-way ANOVA to effectively compare the two approaches 
and investigate the effects of the number of robots and tasks on 
performance. While the construction principles of the two 
approaches are comparable, their respective designs differ, 
impacting the performance of the main approach in terms of 
the quality of the solutions and execution time. In this study, a 
set of randomized tests was conducted to compare the two 
approaches using ANOVA tests. The experimental design 
encompasses three factors: the Approach (AP), the Number of 
Robots (NR), and the problem Size (S). The first factor has two 
levels, the two approaches under consideration, the second 
factor has three levels (6, 8, and 10), and the third one has four 
levels (50, 100, 250, and 500). The detailed results of this 
analysis can be found in Table II. 

Table II presents the F statistics and their respective p-
values, which were determined through the statistical analysis 
of the primary effects of the three factors, namely the approach 
and the number of tasks and robots. The p-values (3.53e-10, 
<2e-16, and 1.35e-10), which are less than the significance 
level of 0.05, indicate that the three factors have significant 
effects on the algorithm's performance. The interaction effects 
of the three factors are incorporated into the ANOVA model. 
The presence of small p-values (0.02122, 2.14e-9, 1.74e-10, 
0.00272, and 0.00265) further substantiates the significance of 
these interactions. This finding suggests that the levels of the 
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three factors interact with each other. The validation of the 
primary assumptions of ANOVA is imperative for the 
generation of reliable interpretations. To this end, a residual 
analysis has been conducted to assess the validity of these 
assumptions. The histogram of residuals displays a 
symmetrical distribution. The normality assumption is then 
tested using a q-q plot and the Shapiro-Wilk test, which 
indicates a normal distribution with a p-value greater than the 
significance level of 0.05. Subsequently, a Levene's test was 
implemented to assess the homogeneity of variance. The 
Levene's test was not significant (p-value=0.464>0.05). 
Consequently, the homogeneity of variances across the distinct 
groups can be assumed. Given the significance of the 
performed analysis, this study proceeds to conduct post hoc 
tests. Initially, simple two-way interactions are undertaken, 
incorporating the approach as the third variable. A statistically 
significant simple two-way interaction between the size and the 
number of robots for both approaches is observed, as evidenced 
by p-values smaller than the Bonferroni-adjusted alpha level of 
0.025. Specifically, the p-value for Approach 1 is 1.93e-08, and 
for Approach 2, it is 1.45e-05. Given the significance of these 
two-way interactions, this work proceeded to compute simple 
simple main effects of the size of the problem on performance. 
The data are grouped by the approach and number of robots, 
and six tests are conducted. The resulting p-values, which are 
used to determine the statistical significance, are 1.45e-10 
(approach 1, r=6), 1.05e-5 (approach 1, r=8), 0.0005 (approach 
1, r=10), 0.0143 (approach 2, r=6), 4.19e-11 (approach 2, r=8), 
and 0.0002 (approach 2, r=10). It is evident that the size of the 
problem is a substantial factor in the performance, as evidenced 
by the findings of this study. Subsequently, to ascertain the 
means of the distinct groups, a comprehensive calculation of all 
multiple pairwise comparisons for the six pairs is conducted, 
employing the Tukeys HSD test. The results of these statistical 
tests are depicted in Table III, which displays the p-values of 
the respective tests. 

TABLE II.  THREE-WAY ANOVA: PERFORMANCE VERSUS 
SIZE AND APPROACH 

 DF Adj SS Adj MS F-Value P-Value 

AP 1 0.01733 0.017334 52.829 3.53e-10 
NR 2 0.04973 0.024866 75.781 <2e-16 
S 3 0.02279 0.007595 23.148 1.35e-10 

AP×NR 2 0.00267 0.001334 4.067 0.02122 
AP×S 3 0.01930 0.006434 19.610 2.14e-9 
NR×S 6 0.02756 0.004593 13.999 1.74e-10 

AP×NR×S 6 0.00736 0.001226 3.737 0.00272 
Error 72 0.02362 0.000338   
Total 95 0.17036    

 
The interactions between the three factors can be also 

examined graphically. Figures 1 and 2 illustrate the interactions 
for the two approaches, respectively. These figures plot the 
group averages against the levels of the size and the number of 
robots. It is evident from these plots that they do not align in a 
consistent pattern, thereby substantiating the conclusion 
regarding the interaction of the three factors. Furthermore, it 
can be concluded that both approaches demonstrate enhanced 
performance when the number of robots is set at 8. 
Specifically, approach 1 exhibits optimal performance for the 
combination of 250 tasks and 8 robots, while approach 2 

achieves its peak performance for the same pair, followed by 
the best performance pair of 50 tasks and 8 robots. In summary, 
although the overall performance of approach 2 is superior, 
approach 1 yields optimal results for a reduced number of 
robots and tasks. 

TABLE III.  P-VALUES FOR THE PAIRWISE COMPARISON 
TESTS 

Pairs Approach 1 Approach 2 

n(1)-n(2) r=6 r=8 r=10 r=6 r=8 r=10 
50-100 1 0.1068 0.4976 0.0292 0.0002 0.9390 
50-250 0.0005 0.0253 0.4976 0.0595 0.1359 1 
50-500 0.0011 0.8345 0.1877 0.3013 6.93e-6 0.0084 
100-250 0.0005 0.0004 1 0.9758 0.0102 0.939 
100-500 0.0011 0.3746 0.0163 0.5036 0.0955 0.0227 
250-500 0.9482 0.0058 0.0163 0.739 0.0002 0.0084 

 

 
Fig. 1.  Interaction plot for approach 1. 

 
Fig. 2.  Interaction plot for approach 2. 

V. CONCLUSIONS 

This study underscores the significance of the Robotic 
Assembly Line Balancing Problem (RALBP) and proposes a 
novel heuristic approach for addressing RALBP. The approach 
under consideration is characterized by its ability to address 
task assignment and robot allocation in a simultaneous fashion. 
It ensures the satisfaction of precedence constraints, balances 
workload, and minimizes the total cost.  The approach 
comprises three primary phases (arrangement, construction, 
and improvement) and two sub-algorithms. The validity of the 
algorithm was ascertained through the implementation of a 
random sample generation process. The study encompasses not 
only a comprehensive summary of the computational 
outcomes, but also the execution of rigorous statistical tests. 
These evaluations are designed to assess and contrast the 
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efficacy of the algorithm in the context of variations in the task 
allocation, robotic resources, and sub-strategies. The outcomes 
of this study demonstrate the efficacy of the proposed approach 
in balancing lines, thus enhancing production efficiency and 
reducing the total assembly costs. The algorithm's flexibility is 
noteworthy, as it can be adapted to accommodate additional 
constraints and address large problem instances. In the 
subsequent phase of the research, the proposed approach can be 
adapted to different assembly line structures, such as parallel or 
two-sided assembly lines. Furthermore, the approach's 
framework can be expanded through the integration of novel 
sub-approaches and the implementation of enhancement 
procedures, which have the potential to influence performance 
metrics and execution times. 
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