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ABSTRACT 

It is common practice for chemical plants to be sized using estimated parameter values that are uncertain 

at the design stage, but whose true values will be known once the plant is in operation. Moreover, not all 

design decisions are fixed once the plant is built, as some may be adjusted during operation. In this paper, 
we present a heuristic method for plant design under uncertainty that takes these characteristics into 

account. The problem is framed as selecting the best from a set of candidate designs, where each candidate 

design results from optimizing the plant for a set of possible values of the uncertain variables. Decision 
trees are used to select the best-performing alternative given the probability distribution of the 

uncertainties. A working example is presented that relates to the design of a heat-integrated reactor with 

uncertainty in the plant inlet composition. Candidate designs and optimal operation for different 

compositions are found by using the Solver add-in of MS Excel. It is concluded that decision trees allow 

post-construction operational adjustments and parameter uncertainties to be easily and clearly 

incorporated into the design process. 

Keywords-uncertainty; chemical plant design; optimization; decision trees 

I. INTRODUCTION  

When designing a chemical process plant, it is often the 
case that the values of several important parameters are not 
known precisely, so engineers must rely on typical values 
justified by accumulated experience [1]. While the literature 
provides methods for optimal plant design under uncertainty, 
most of which maximize the expected profit of the plant, the 
resulting problem is mathematically very difficult to solve [2]. 
For plant design purposes, the uncertain parameters can be 
divided into two types: those related to inherently uncertain 
variables, and those related to variables whose true value will 
not be known until the plant is in operation. A robust design 
will perform well for the first type, whereas a flexible design 

can be adjusted later, when the values of the relevant variables 
are known. This differentiation has not been addressed in the 
literature on stochastic plant design. 

This paper proposes a method for designing robust and 
flexible plants, using decision trees [3] to select a design from a 
set of candidates that are optimal for a set of possible values of 
the uncertainties. To select a flexible design, the heuristic 
method represents the problem as a tree with two decisions, 
one before and one after the relevant parameters are known. 
The heuristic method is demonstrated using the design of a heat 
integrated reactor with an uncertain inlet composition. The 
optimal designs for different parameter sets were obtained 
using the Solver add-in of MS Excel. 
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II. LITURATURE REVIEW 

Research on plant design under uncertainty can be broadly 
categorized by the type of process being studied.  

A. Research on Power Generating Plants 

Martin [4] investigated the uncertainties in power plant 
design and developed a mixed integer linear programming 
model for the design of processes that convert solar and wind 
energy into methanol and hydrogen. Salman et al. [5] proposed 
a waste-to-energy conversion plant design through stochastic 
optimization and simulation, whereas Previtali et al. [6] 
considered the variability of the inlet stream composition in the 
design of combined heat and power plants. Teichgraeber and 
Brandt [7] used scenario reduction and stochastic optimization 
to account for utility price uncertainty in the design of 
electricity intensive processes, and Ahmad et al. [8] presented 
an exergy analysis of a cumene plant.  

B. Research on Chemical and Petrochemical Processes 

Examples of studies that have considered the effect of 
parameter uncertainty on process controllability include the 
work of Palazoglu and Arkun [9], who used multi-objective 
semi-infinite dynamic programming to design a system of 
serial stirred reactors; Bahakim and Ricardez-Sandoval [10], 
who used stochastic programming to design processes to be 
regulated by model predictive control; and Hauptmanns [11], 
who used simulation to study the effect of uncertainty on the 
safe operation of an acetic anhydride reactor. Stochastic 
optimization of industrial wastewater treatment systems is 
considered by Lemita et al. [12] and Sun and Lou [13], who 
developed a multi-objective optimization method for the design 
of the treatment section of an ammonia process, whereas 
Bahakim and Ricardez-Sandoval [14] approached the design of 
a carbon dioxide capture plant through a power series 
expansion model. Ramin et al. [15] and Li et al. [16] identified 
the preferred activated sludge plant configuration under inlet 
stream uncertainty using sensitivity analysis through a 
metamodel and simulation, respectively. Carnio et al. [17] 
investigated the effect of parameter uncertainty on emissions 
from a biogas-to-methanol processing plant.  

Other reported applications of process stochastic 
optimization include those of Marques et al. [18], who coupled 
linear programming and Monte Carlo simulation to consider 
uncertainties in the launch of a pharmaceutical product; Chen 
et al. [19, 20], who applied the generalized disjunctive 
programming method for the synthesis of chemical processes, 
the latter demonstrating its application to methanol and toluene 
hydrodealkylation plants; Duong et al. [21], who used the 
polynomial chaos expansion method and process simulation to 
assess the performance sensitivity of complex processes 
hindered by multiple uncertainties; and Ali et al. [22], who 
applied these tools to assess the reliability of a natural gas 
plant. Finally, Lotz et al. [23] studied the optimization of a 
plant under uncertainty through a two-stage model coupling 
simulation and an evolutionary strategy, distinguishing 
between design decisions that are fixed and those that can be 
changed later. 

C. Discussion 

Except for the work of Lotz et al. [23], there are no reports 
on stochastic methods that explicitly distinguish between fixed 
and adjustable design decisions. In addition, the 
aforementioned work does not take a decision analytic 
approach like the one presented in this study. Decision analysis 
provides tools to account for changes in the decision maker's 
knowledge as previously unavailable new information becomes 
known. 

III. DESCRIPTION OF THE HEURISTIC METHOD 

The factors that determine the plant profit �  are divided 
into three vectors: D  includes permanent decisions (e.g., the 
equipment type and size), q  denotes adjustable operating 
conditions (e.g., controller setpoints), and y  groups non-
controllable variables: 

� = �(D, q, y)    (1) 

For a known y, the optimal design 
D, q� that maximizes � 
is called 
D, q��
�(y), and is the solution of (2): 


D, q��
�(y) = �
D, q�| max�,���(D, q, y)�� (2) 

For y  uncertain, the optimal design that maximizes the 
expected value of �, �
��, is the solution of (3): 


D, q��
� = �
D, q�| max�,�(�
�(D, q, y)�)� 

 (3) 

If the conditions q  can be adjusted depending on y , the 
optimal design is found by solving (4): 

D�
� = �D| max�(�
�(D, q(y), y)�)�  (4) 

If D, q, and y are continuous variables, finding the solution 
of (3) and (4) is mathematically very complex. To avoid this 
complexity, this paper proposes a heuristic method to find a 
design that performs acceptably. The heuristic method consists 
of the following steps: 

1. Assume that y is a single discrete random variable � with � 
possibilities �� , ��, … , �!  and probabilities "# = "(� = �#) 

for $ = 0,1, … �. If y is continuous, it can be discretized. 

2. For each value of �# , an optimal design 
D, q��
�(�#) is 
found by solving the problem stated in (5). The resulting � 
designs make up the set of "candidate designs". 


D, q��
�(�#) = �
D, q�| max�,���(D, q, �#)�� (5) 

3. If �  is not measured, the problem reduces to selecting, 

among the � designs 
D, q��
�(�#), the one with the best 
performance for the distribution of � . If D�
�(�#) and 
q�
�
D�
�(�#), �#�are the values of D and q, respectively, 
resulting from solving (5), then the selection is shown in 
Figure 1. The performance of the selected design is likely 
to be worse than that of the solution of the stochastic 
optimization (3). However, the selected design will be 

competitive as it is optimal for one possibility of � and is 
selected by considering the degradation in performance 

caused by other values of �, weighted by the probability of 
those values. 
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Fig. 1.  Decision tree for unmeasured �. 

4. In the more general case, the plant's permanent design 
items D  are set to D�
�(�#) , whereas the operating 

parameters q  are changed once �  becomes known. The 

optimal q, for D equal to D�
�(�#) and � = �', is given by 

(6): 

q�
��D�
�(�#), �'� =
                                (q| max� )��D�
�(�#), q, �'�*+ (6) 

Equation (6) indicates that if the design permanent items 
are set to D�
�(�#), which is optimal for �# , but the value 

of �  happens to be �'  instead of �# , the operating 

parameters q would be changed to q�
��D�
�(�#), �'� to 

increase the profit. The decision tree with this variation is 
shown in Figure 2. 

 

 
Fig. 2.  Decision tree with adjustable operation. 

In decision trees, squares represent decisions and circles 
represent uncertainties. The lines starting from a square are 
alternatives, while those starting from circles are possibilities. 
If a decision is to the right of an uncertainty, it means that the 
former was made knowing which possibility occurred in the 
latter (as decision q with respect to uncertainty � in Figure 2). 
If the decision is to the left of the uncertainty, it means that it 
was made without knowing what happened for the latter (as 
decisions 
D, q� with respect to � in Figure 1). 

IV. CASE STUDY EXAMPLE 

Figure 3 shows a numerical example, where the reaction 
AB occurs in a catalytic reactor with ,  kg of catalyst. A 

feed of molar flow -�  and temperature .�  containing A and 
inert I, with mole fractions �/,� and �0,� , respectively, passes 
through two heat exchangers before entering the reactor. The 
recovery exchanger (HX-R) raises the inlet stream temperature 
to .� , whereas the service exchanger (HX-S) uses a utility 
stream of flow 12, specific heat capacity 3"2, and temperature 
.24  to further raise the feed temperature to .5 . The reactor 
outlet, with mole fractions of A, B, and I, �/ , �6 , and �0 , 
respectively, and temperature .7 leaves the HX-R exchanger at 
temperature .8. The thermodynamic parameters of the system 
are given in Table I. 

 

 
Fig. 3.  Numerical case study. 

TABLE I.  THERMODYNAMIC PARAMETERS 

Variable Symbol Value 

Heat capacity of 9 3"/ 90 kCal/kmol °C 

Heat capacity of : 3"6 90 kCal/kmol °C 

Heat capacity of ; 3"0 90 kCal/kmol °C 

Kinetic preexponential 
factor 

9� 
110-2 

kmol/(kgminatm) 

Activation energy �/ 8,000 kCal/kmol 

Heat of reaction ∆= -20,000 kCal/kmol  

 
The net profit of the system (G) is calculated as 

� =
�6 > -� > �6 ? @A/B > , ?                                   @CD >
(E9F G E92) ? @H2 > 12    (7) 

Table II shows the definition and values of the economic 
parameters in (7). The permanent design decisions, D, are the 
heat exchanger sizes (E9F  and E92) and the catalyst weight 
(,). The adjustable operating parameter vector, q, has only 
one entry, the flow of utility to the service exchanger (12). The 
inlet composition (�/,�) is considered an uncertain parameter at 
the time the process is designed. Figure 4 shows the numerical 
values of the system parameters. 

TABLE II.  ECONOMIC PARAMETERS 

Variable Symbol Value 

Net profit per : produced �6 $3/kmol 

Catalyst cost @A/B $0.5/kg 

Heat exchangers cost (per unit of E9) @CD $0.02/(kCal°C) 

Utility stream cost @H2 $2/(kg/min) 
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Fig. 4.  Design variables (red), uncertainties (purple), and parameters that 
are either constant or set by material and energy balances (black). 

The value of �/,�  is uncertain, but is known to be in the 
range 0.72-0.80, as represented by the distribution in Table III. 

TABLE III.  INLET COMPOSITION PROBABILITY 
DISTRIBUTION  

IJ,K
L  M�IJ,K = IJ,K

L � 

0.80 "��/,� = 0.8� 

0.75 "��/,� = 0.75� 

0.72 "��/,� = 0.75� 

 
The alternative designs presented in Table IV are 


D, q��
�(0.72) , 
D, q��
�(0.75) , and 
D, q��
�(0.80) , each 
of which is the optimal design for one possibility of �/,�. The 
optimizations were performed using the Solver add-in of MS 
Excel. 

TABLE IV.  ALTERNATIVE DESIGNS 

Design SJT SJU V WU X 


D, q��
�(0.8) 839.9 434.3 62.6 3.7 20.6 


D, q��
�(0.75) 698.6 599.8 62.9 5.1 10.1 


D, q��
�(0.72) 616.1 697.5 63.0 5.9 3.9 

 

A. Design without Measurement of �/,� 

In the case of a design without measurement of �/,� , 12 
remains fixed, as shown in Figure 5. 

 

 
Fig. 5.  Operation without composition gauge. 

To select the best design, �  is evaluated for each design 
alternative and possibility of �/,�. The results are presented in 
Table V. The evaluation is performed using the decision tree 
shown in Figure 6. Uncertainty nodes are resolved by 
calculating the expected value of the gain of the branches 
originating from them. The design that leads to the uncertainty 
node with the highest expected value is selected.  

 

 
Fig. 6.  Decision tree when �/,� is not measured. 

TABLE V.  NET PROFIT � FOR ALTERNATIVE DESIGNS 
AND INLET COMPOSITION POSSIBILITIES 

Design IJ,K = K. YK IJ,K = K. Z[ IJ,K = K. Z\ 


D, q��
�(0.80) 20.6 8.7 -45.7 


D, q��
�(0.75) 19.9 10.1 3.6 


D, q��
�(0.72) 19.0 9.9 3.9 

 

The recommended design for different values of "��/,� =
0.8�  and "��/,� = 0.72� , with "��/,� = 0.75�  being their 
complement to one, is shown in Figure 7. While the exact value 
of �/,� is not known, the user is expected to be able to provide 
estimates of these probabilities, with the recommended design 
given by the region of Figure 7 in which these values lie.  

 

 
Fig. 7.  Selected design when �/,� is not measured. 
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Notably, the alternative design 
D, q��
��0.8	  is only 
recommended for a very limited range of probabilities. This is 
because its performance deteriorates sharply for the values of 
�/,�  other than 0.8, especially for �/,� � 0.72 , for which it 
yields a profit of -45.7. Thus, 
D, q��
��0.8	  is only 

recommended if a �/,�  value of 0.72 cannot occur, "��/,� �
0.72� � 0 , and there is a high confidence that �/,�  is 0.8, 

"��/,� � 0.8� ] 0.7. 

B. Design with Measurement of �/,� 

In the case of a design with measurement of �/,�, once the 

plant is running, a gauge will measure the composition �/,� , 
allowing the adjustment of the utility flow to the service 
exchanger 12, as shown in Figure 8. 

 

 
Fig. 8.  Operation with composition gauge. 

Let D�
���/,�
# � refer to the fixed elements (E9F, E92, and 

,) of the design 
D, q��
���/,�
# �. Given a possibility �/,�

'
 other 

than �/,�
#

, 12,�
��D�
���/,�
# �, �/,�

' �  is the value of 12  that 

maximizes � , provided that E9F , E92 , and ,  are those 

optimal for �/,�
#

 and the value of �/,�  is �/,�
'

. As before, the 

optimal value of 12 was determined using the Solver add-in of 
MS Excel. The optimization results are shown in Table VI, 
where the optimal values of 12 are listed in the 12,�
� columns. 

TABLE VI.  VALUES OF 12 MAXIMIZING � FOR DIFFERENT 

D�
���/,�# � AND �/,� � �/,�
'

 

Design SJT SJU V 
IJ,K � K. Y IJ,K � K. Z[ IJ,K � K. Z\ 

WU,^_` X WU,^_` X WU,^_` X 

D�
��0.8	 839.9 434.3 62.6 3.7 20.6 4.7 9.4 5.4 1.9 

D�
��0.75	 698.6 599.8 62.9 4.3 20.2 5.1 10.1 5.7 3.8 

D�
��0.72	 616.1 697.5 63.0 4.7 19.6 5.4 10.0 5.9 3.9 

 
The decision tree for this scenario is shown in Figure 9. It 

has two decisions, the initial selection of D�
���/,�
# � and the 

change of 12  to its optimal value given D�
���/,�
# �  and the 

observed �/,�.  

In addition, the recommended design for different values of 

"��/,�
# � is shown in Figure 10. From this figure, it is apparent 

that the area where the D�
��0.8	  design is selected grows 
considerably compared to that in Figure 7. This is because the 
adjustment of 12  when �/,�  takes the value of 0.72 avoids a 

negative profit for this design and �/,� value. 

 

 
Fig. 9.  Decision tree when �/,� is measured. 

 
Fig. 10.  Selected design when �/,� is measured. 

V. CONCLUSIONS 

This paper presents a method for plant design under 
uncertainty that incorporates two common characteristics of 
chemical plant design: the fact that some uncertain variables 
will eventually be known, and that some design decisions are 
adjustable. These aspects, which have been ignored in the 
previous literature on plant design under uncertainty, are 
addressed by decision trees. The method selects the best design 
from a set of candidates that result from optimizing the system 
for the possibilities of the uncertain variables. The problem 
structure is represented by decision trees that have two 
decisions for the case of adjustable parameters, one for the 
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decisions made before the plant is built and the other for the 
decisions made after the plant is in operation. Once the 
heuristic method is described, it is applied to the design of a 
heat integrated reactor system hindered by uncertainty in feed 
composition. The results are presented as regions of the 
composition probability space for which a given alternative 
design is recommended. 

Decision trees provide a clear, neat representation of the 
decision structure (the temporal entanglement of decisions and 
uncertainties). However, tackling more complex problems than 
the one worked on here, with more uncertain variables, 
possibilities, or decisions, would be hindered by an exponential 
growth in the size of the trees needed to represent the problem. 
To limit the growth of the trees, the engineer would need to 
group variables that are likely to occur simultaneously or have 
a similar effect on the process.  
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