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ABSTRACT 

The increased use of Internet of Things (IoT) technologies has resulted in an exponential increase in real-

time data streams, particularly in smart city applications, especially for traffic management. Accurate 

prediction of traffic parameters in such environments is critical for optimizing traffic flow, reducing 

congestion, and enabling efficient resource management. This study presents an approach to the prediction 

of traffic intensity and occupancy using IoT streaming data, time series analysis, and machine learning 

algorithms. The proposed method includes preprocessing steps such as data interpolation to handle 

missing values and temporal alignment, followed by feature extraction and model training using a 

combination of regression and sampling techniques. Experiments were carried out on a real-world IoT 

traffic dataset, and the results show significant improvements in the prediction accuracy in terms of MAPE 

values. It also predicts the complex event of congestion, using a rule-based algorithm. The proposed 

method can pave the way for smarter and more efficient urban infrastructure. 

Keywords-IoT streaming; traffic data; adaptive; reservoir sampling; regression; prediction 

I. INTRODUCTION  

The Internet of Things (IoT) has gained widespread 
prominence around the world. It is a well-connected network of 
elements, including a variety of sensors. These devices 
continuously generate data by monitoring various parameters, 
which may be analog, digital, or combined. The purpose of 
networking these devices extends beyond passive observation. 
The establishment of this interconnected infrastructure enables 
the development and implementation of a wide range of 
groundbreaking applications. These data can offer meaningful 
information to improve the quality of applications. However, 
there is a growing need for real-time or near-real-time analysis. 
Supply chain systems [1], intelligent traffic monitoring [2], 
network monitoring [3], and fraud detection [4] are a few use 
cases that require the deployment of such analytical 
frameworks. Under these circumstances, historical data serve 
as a foundational resource, enabling the transformation of 
streaming data, analyzed in real-time or near-real-time, into 
practical intelligence. 

Sensor data is continuously generated in real time as event 
streams, exhibiting intricate patterns, each corresponding to a 
distinct occurrence. Accurate interpretation of these unique 
events requires consideration of the prevailing context while 

minimizing errors, thus facilitating decision-making. This 
necessity underscores the relevance of the domain known as 
Complex Event Processing (CEP). CEP encompasses a 
collection of techniques for capturing and analyzing data 
streams as they arrive to identify threats and opportunities in 
real time. CEP enables systems and applications to respond to 
trends, events, and patterns in the data [5]. It is used 
predominantly in scenarios characterized by high-speed event 
generation, where strict requirements for minimal latency must 
be upheld without compromise. CEP is used in a wide variety 
of applications such as data center security [6] and energy 
management systems [7]. 

However, in-depth domain knowledge is required to set up 
CEP. It is primarily declarative but also reactive by nature. This 
is achieved by correlating data streams as they arrive. 
Historical data can be used by combining CEP with Machine 
Learning (ML). In the specific case of disaster management 
systems, such as tsunamis [8], the idea is to predict the disaster, 
rather than just detecting it. ML algorithms, combined with 
statistical data, have found great use in predicting overall 
production costs in supply chain management [9] and energy 
consumption [10]. Although ML algorithms can leverage 
historical data, their primary drawback is that they lack 
scalability and the capacity to process multiple data streams 
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simultaneously. Hence, there is a need to combine the strengths 
of the ML and CEP techniques. Correct conclusions can be 
drawn by CEP using input from accurate predictions of ML 
techniques.  

Event processing encompasses analyzing events and 
identifying patterns. Complex events are a combination of 
events that, when analyzed, can alert to several useful 
information, ranging from opportunities to threats. There are 
many applications where CEP is used with IoT, acting on data 
streams to infer details of complex events. This is based on a 
number of techniques, including event filtering, aggregation, 
pattern detection, and abstraction [11]. In [12], an Event Driven 
Architecture (EDA) was proposed based on CEP, where large-
scale traffic data was analyzed. This approach facilitates 
automated solutions for decision support systems, enhancing 
traffic management. Event Processing Agents (EPAs) were 
utilized to connect streams of progressively abstract types of 
events. ESPER CEP was proposed for the implementation, 
overcoming its inherent ability to realize distributed 
architecture using message-oriented middleware. In [13], a 
distance-based event detection system was proposed to detect 
complex low-level events such as "ball possession" and 
"kicking the ball" in football. In [14], CEP technology was 
used to analyze data streams and uncover attacks on IoT 
applications that used the MQTT and CoAP protocols. 

Progress has been made in using predictive analytics in 
conjunction with statistics and CEP to provide predictive 
solutions. In [15], a probabilistic event processing network was 
utilized to detect complex events, employing a multi-layered 
Bayesian model to predict future events. This approach utilized 
the Expectation Maximization (EM) algorithm, which incurs a 
high computational cost. As the size of the training dataset 
increases exponentially, the complexity of the model also 
increases, rendering it inept for massive IoT applications. In 
[16], an algorithm based on the sliding window model on data 
streams was proposed to extract Weighted Maximal Frequent 
Patterns (WMFPs). Deep learning approaches have also been 
used for time series prediction. In [17], the LSTM and GRU 
methods were used to predict confirmed and death cases of 
COVID-19 in three countries.  

Data streams refer to data that increase over time. The 
salient characteristics of the data streams [18] can be classified 
as follows: 

 The upcoming data in the data stream remain unseen until it 
arrives, in contrast to historical data that provide visibility 
into how the data flows over time. 

 The data elements follow a time series pattern, as they arise 
one by one. 

 Data streams are quite large, hence, there is a difficulty in 
storing such huge amounts of data. 

Due to these characteristics, deterministic algorithms 
cannot be applied to data streams. However, there is an 
increasing need to analyze data streams in many applications, 
such as anomaly detection [19], monitoring of IP packets [20], 
health analytics [21], and intelligent transportation systems 
[15]. 

Data streams are formulated as ��  = {��, �	, . . , ��}, where 
��  denotes the elements entering over time and observed at 
time 
 . Access is currently limited to this data, with no 
visibility into the upcoming data stream. Any data generation 
that follows this fashion is categorized as streaming data. The 
data sources can be telephone records, web documents, 
clickstreams, financial market data, video and audio streams, 
etc. An extensive amount of work has been conducted to 
understand the behavior of these streams [22]. 

Time series analysis [23], is naturally time-dependent and 
typically has consistent time stamps. Therefore, at any point in 
time 
, �� = {��, �	, . . , ��} is only observed. Each of these �� 
values can be a group of values. Also, since all the data cannot 
be stored in memory, there is a need to find a method to 
compute �(��)  at any time 
 . Several methods have been 
described in various works [24]. One way to achieve this is 
through sampling. Sampling techniques have been extensively 
examined for a variety of domains, and optimal sampling 
methods have been presented [25-26]. Several sampling 
techniques can be used for IoT streaming data, such as time-
based, event-based, and adaptive sampling techniques. These 
techniques improve real-time performance and reduce storage 
requirements. This can also lead to an increased error rate 
unless the appropriate technique is chosen.  

Reservoir sampling [27] is a significant adaptive statistical 
technique that was developed to allow analysis of large-scale 
datasets while optimizing memory utilization, which is a 
crucial consideration given the limitations of the period it was 
formulated. This work explores an adaptation of reservoir 
sampling to enable data prediction by integrating historical and 
near real-time streaming data, implemented within the 
framework of Adaptive Reservoir Sampling Regression 
(AdReSaR). In previous studies on reservoir sampling, 
reservoir methods were generalized to select balanced samples 
[28], but the decision on a unit at the beginning of the stream 
can be made quite late. In [29], a data analytics system was 
explored in the realm of edge computing for approximate 
computing. 

This work utilizes the combined strengths of CEP and ML. 
The AdReSaR algorithm is used for prediction, utilizing 
reservoir sampling for model training alongside a regression 
technique. The trained model can be updated with the arrival of 
new data. The sampling size is determined using reservoir 
sampling to optimize performance. This is later fed into a 
regression model to predict the values. The contributions of this 
study are as follows: 

 Presents a system based on ML and CEP for forecasting 
IoT applications. 

 Proposes an adaptive prediction algorithm for IoT data 
streams using reservoir sampling and regression. 

 Performs comparative analysis with other experimental 
techniques. 

 Evaluates the AdReSaR algorithm on near-real-time 
streaming data for congestion prediction. 
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II. PROPOSED ARCHITECTURE 

Figure 1 illustrates the proposed system. Streaming data 
from a real-time data source is fed to the AdReSaR algorithm 
along with historical data. The predicted data are fed into the 
CEP system. The output of the CEP system is the predicted 
complex event.  

 

 
Fig. 1.  Proposed system using AdReSaR. 

A. Preliminaries 

1) Dataset Description 

The busiest traffic areas in Madrid include several key 
zones, particularly in the city center and around the major 
intersections and transportation hubs. Traffic congestion is 
prevalent in some important places such as Atocha, Puerta del 
Sol, M-30, and M-40. The Madrid city council offers a wealth 
of information related to traffic and public services within the 
city. Several traffic observation sensors at fixed high-traffic 
spots in the city measure various traffic characteristics. Table I 
presents details on the specific parameters that were used in 
this study. 

TABLE I.  PARAMETERS CONSIDERED 

Parameter Explanation  

idelem 
Unique identifier used to locate traffic measurement 

points on a map 

intensidad 
Vehicle count passing through a measurement point 

per hour. 

ocupacion 
Occupancy (%), how much of time vehicles were 

occupying the lanes 

 
These data are published in XML format [30]. Data was 

collected for a month (March 2024) and stored as historical 
data. The AdReSaR algorithm was applied to the historical data 
to predict the results for intensidad and ocupacion for two 
locations. 

2) Time Series Data 

Data are recorded for each observation at regular intervals. 
The order of the observations matters much and the data are 
used to analyze changes or patterns. Let ��  represent the value 
of a time series at time 
. The time series equation is shown in 
(1), where �(
)  is the function representing the underlying 
pattern of data and �� the error at time 
. 

�� = �(
) � ��    (1) 

3) Regression 

Regression is a statistical method to model the relationship 
between one or more independent variables (often referred to 
as predictors or features) and a dependent variable (also known 
as the outcome or response). Regression analysis aims to 
understand and quantify the relationship between variables and 
make predictions. Its mathematical representation is shown in 
(2), where �� and �� are the �-intercepts and slope coefficients, 
�  is the error term, � is the dependent variable, and �  is the 
independent variable. 

� =  ��  �  ��� � �    (2) 

Other statistical methods, such as ARIMA and enhanced 
ARIMA models [31], have been applied for regression tasks. 
There is a current trend toward utilizing ML models, such as 
Support Vector Regression (SVR), K-Nearest Neighbors 
(KNN), and Artificial Neural Networks (ANN), due to their 
predictive power and flexibility. 

4) Support Vector Regression (SVR) 

SVR is an ML algorithm for regression analysis [32], 
adapted from support vector machines which were originally 
used for classification. Unlike the other algorithms, it focuses 
on fitting the best hyperplane within a certain margin (� tube) 
around the actual values. Another advantage of SVR is the 
availability of kernel functions, which are useful for 
transforming the data input into a higher dimension, making it 
possible to find a hyperplane that separates or fits the data more 
effectively. SVR is versatile, handling both linear and nonlinear 
regression tasks, through the use of various kernel functions. 
The Radial Basis Function (RBF) can tune the gamma 
parameter. This study experimented with other kernels before 
choosing RBF due to its performance. 

5) Reservoir Sampling 

Sampling is the process of selecting a subset from a larger 
population and using it for analysis, based on the properties of 
the smaller subset chosen. There are several sampling methods 
whose efficiency depends on the dataset considered. A simple 
random sampling can be represented as in (3), where � is the 
population and � is the sample size. Here, each individual in 
sampling has an equal opportunity to be selected. 

� (�����
��  �!������ �"#!��) =  

     �!/(�. (� & 1). (� & 2). (� & � � 1) (3) 

Reservoir sampling employs a method that manages an 
infinite data stream of size )  and gathers a randomly 
distributed sample of at least ) elements from the unbounded 
data stream. This is significantly important because this 
sampling method ensures that the earliest )  components 
primarily remain in the reservoir. This is fulfilled when the �th

 
item is identified (where � * )). The objective is to sample + 
elements from a stream. Upon reaching the � th

 element, the 
following conditions must be met: 

 Every element has exactly a +/� probability of being in the 
sample. 

 Exactly + elements have been sampled. 
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It takes as input a stream of items and an integer + (the desired 
size of the reservoir), and it outputs a reservoir containing a 
random sample of size +. 

B. Adaptive Reservoir Sampling Regression Algorithm 
(AdReSaR) 

AdReSaR represents the initial step in addressing dynamic 
IoT data. Traditionally, ML models are trained on historical 
data to facilitate prediction. The quantitative characteristics 
(statistical characteristics) of the data may change. This can 
make it difficult to update the model to suit this change, and 
not updating it will result in a deterioration of the prediction 
model's effectiveness. In such a typical scenario, it is best to 
retrain the model by applying sampling and regression 
techniques on historical data and near-real-time data streams. 
This is materialized by assessing the prediction error and fine-
tuning the model accordingly. Figure 2 shows the main steps of 
this algorithm. The objective is to predict parameters of time 
series data using various models, interpolation techniques, and 
sampling strategies to minimize prediction errors. 

 

 
Fig. 2.  The AdReSaR algorithm. 

1)  Data Capture, Storage, Preprocessing and Reservoir 
Sampling 

Data were collected using Kafka, a distributed streaming 
platform that is scalable and fault-tolerant, allowing the storage 

and processing of data streams [33]. Historical data was 
acquired from streaming sources [30] at 15-minute intervals 
and subsequently archived in a file for subsequent retrieval and 
analysis. To augment the data's temporal resolution, 
interpolation techniques were employed for the parameters of 
intensidad and ocupacion to resample the data at 5-minute and 
1-minute intervals. Reservoir sampling was implemented on 
the above data to find the reservoir size. In this reservoir of 
sample points, missing values were imputed using cubic and 
linear interpolation.  

2) Model Optimization 

The parameters for the training and prediction windows 
were initialized. The regression models considered include the 
Gaussian Process Regressor (GPR) with a Matérn kernel, the 
Stochastic Gradient Descent (SGD) regressor with an RBF 
kernel, and the Support Vector Regression (SVR) with an RBF 
kernel, both with and without sampling. The analysis involved 
predicting the values using the chosen regression technique. 
The values were predicted and the prediction error was 
determined in terms of Mean Absolute Percentage Error 
(MAPE). The MAPE value was compared to predefined upper 
and lower threshold values, and the prediction window size 
was adjusted accordingly, either increasing or decreasing by 1. 
The upper and lower threshold values for MAPE were 
established at 10 and 5 respectively. The final prediction 
window was chosen as the one with the lowest MAPE, as it is 
desirable to minimize MAPE [34]. This prediction window size 
can be applied to near-real-time streaming data to find the 
predicted values of the parameter of interest.  

3) Complex Event Processing (CEP) System  

The above-predicted parameter values (historical and near-
real-time predicted) can be sent to a CEP system to gather 
useful insights such as congestion prediction, environmental 
impact monitoring [35], integrated smart city solutions [36], 
etc. Figure 3 depicts a typical CEP system. 

 

 

Fig. 3.  A typical CEP system. 

III. EXPERIMENTS AND TRIALS 

A. Rule Base for Congestion Prediction 

The data collected in the previous steps were processed to 
detect a complex congestion event based on threshold values 
( ,�
����-"-�./01. , 2�3!"��4��./01. ) incorporated into a 
simple rule-based engine. This can be verified graphically by 
plotting a graph of intensidad vs ocupacion. Algorithm 1 
shows a sample rule-based algorithm for predicting congestion. 
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Algorithm 1: Rule-based Congestion  

  Prediction 

Input: (,�
����-"-, 2�3!"��4�) 
Output: Congestion Condition 

If (,�
����-"-<,�
����-"-�./01.) ∧  

  (2�3!"��4�< 2�3!"��4��./01.) then 

  64� ��
�4�_64�-�
�4� = 'Free-flowing' 

elif(,�
����-"->=,�
����-"-�./01.)∧ 

  (2�3!"��4�<2�3!"��4��./01.) then 

  64� ��
�4�_64�-�
�4� = 'Efficient Movement' 

elif(,�
����-"->=,�
����-"-�./01.)∧ 

  (2�3!"��4�>=2�3!"��4��./01) then 

  64� ��
�4�_64�-�
�4� = 'Congestion' 
else: 

  64� ��
�4�_64�-�
�4� = 'Slow Movement' 
 

B. Comparison Experiments 

Experiments were conducted using combinations of 
regression and sampling approaches to predict the values of 
intensidad and ocupacion and the complex event of congestion. 
The list of techniques used and their prediction errors are 
illustrated in terms of MAPE: 

89�: =
�

�
∑ |(=� & >�)/=�|�

�?�    (4) 

where =�  denotes the actual value, >�  denotes the predicted 
value, and �  is the number of fitted points (total predicted 
values). The prediction results for traffic intensity (intensidad) 
and occupancy (ocupacion) for two different locations were 
plotted, indicating close alignment with the original data. This 
level of accuracy was achieved because the model incorporates 
any prediction errors and updates itself accordingly, due to the 
efficient algorithm design, effectively preventing errors from 
propagating. Since the error of predicted values is minimized, 
subsequent inputs to the CEP module can also produce results 
with smaller errors. The same method for near-real-time 
streaming data was adopted, by streaming live data from the 
website for 400 minutes. 

IV. COMPARATIVE ANALYSIS OF PERFORMANCE 

Experiments were carried out employing various 
approaches, including multiple regression methods, sampling 
techniques, and a combination of both regression and sampling, 
to predict the values of intensidad and ocupación. 

A. Methods for Performance Comparison 

The following methods were employed to compare 
performance under different conditions.  

 GPR with Matérn kernel, 

 SGD regressor with an RBF kernel, 

 SVR with an RBF kernel with and without sampling. 

Additionally, wherever appropriate, linear and cubic 
interpolation at 1-minute and 5-minute intervals was explored 
to address data continuity requirements. 

1) Gaussian Process Regressor (GPR) with Matérn Kernel 

GPR with a Matérn kernel [37] predicts values by 
considering the covariance between data points, providing 
probabilistic predictions, and capturing nonlinear relationships. 
The Matérn kernel allows GPR to handle smoothness in the 
data, where the degree of smoothness is controlled by its 
parameters. Although this approach can yield good results, it 
takes more time to run.  

2) Stochastic Gradient Descent (SGD) Regressor 

The SGD regressor [38] performs linear regression using 
SGD, in which the model parameters are updated iteratively for 
each training example, making it efficient for large datasets. 
The model minimizes the loss function by adjusting the 
weights based on gradient updates. It stops either after reaching 
the maximum iterations or when the error improvement 
becomes smaller than the threshold.  

3) Support Vector Regression (SVR) 

SVR was used with an RBF kernel with and without 
sampling. SVR [39] aims to identify a function that 
approximates the target values within a specified margin of 
error (�) while maintaining the smoothest possible model. This 
approach minimizes complexity and deviation from the true 
values. SVR is versatile, handling both linear and nonlinear 
regression tasks using various kernel functions. Common 
kernel functions are linear (for data that are linearly separable), 
polynomial (for polynomial relationships between input 
features and output), sigmoid (for some types of nonlinear 
relationships), and RBF (for nonlinear relationships). The RBF 
kernel is a common choice in SVR because it can capture non-
linear relationships by mapping the input space into a higher-
dimensional space. The key parameters of SVR with RBF are: 
The 6  regularization parameter (higher values of 6  aim to 
minimize error more strictly but may lead to overfitting) and 
gamma (the kernel coefficient of RBF) [40]. The values of the 
parameters used for these experiments were 6 = 1�3  and 
 "##" = 0.1. These values were chosen because larger or 
smaller values can lead to overfitting or underfitting. The use 
of SVR also requires preprocessing. For SVR, it is common to 
scale both the features and the target variable, because it is 
sensitive to the magnitude of the data.  

The imputation of missing data was also examined. Several 
techniques such as mean/median/mode imputation, hot-deck 
imputation, KNN imputation, and simple interpolation 
techniques can be used. Given the nature of time series data 
and the need to estimate missing values based on neighboring 
time points to maintain continuity, interpolation was selected 
over other methods. Linear and cubic interpolations were 
examined. This method was also combined with reservoir 
sampling before applying regression. This allowed analyzing 
model behavior with different sample sizes while preserving 
the dataset's statistical properties. 

B. Results and Analysis 

Figures 4 and 5 and Table III show the results. Table II 
delineates the legend for the abbreviations employed in the 
graphs, whereas Table III shows the MAPE accuracy metrics 
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achieved by the algorithms across the intensity and occupancy 
parameters for two different locations. 

The results show that sampling offered significant 
improvement in MAPE values. Comparing 1-minute to 5-
minute interpolation, the former had lower MAPE values 
compared to the latter. The comparison of linear with cubic 
interpolation shows that for 1-minute interpolation, linear 
yielded better results, while for 5-minute interpolation, cubic 
yielded lower MAPE. 

 

 
Fig. 4.  Comparative prediction accuracy for intensidad at locations 1 and 

2. 

 
Fig. 5.  Comparative prediction accuracy for ocupación at locations 1 and 

2. 

TABLE II.  ABBREVIATIONS USED IN COMPARISONS 

Algorithm Details 

SRS1L SVR with sampling (1-minute linear interpolation) 

SRS5L SVR with sampling (5-minute linear interpolation) 

SRS1C SVR with sampling (1-minute cubic interpolation) 

SRS5C SVR with sampling (5-minute cubic interpolation) 

SR1L SVR without sampling (1-minute linear interpolation) 

SR5L SVR without sampling (5-minute linear interpolation) 

SR1C SVR without sampling (1-minute cubic interpolation) 

SR5C SVR without sampling (5-minute cubic interpolation) 

SGDRBF1L SGD without sampling (1-minute linear interpolation) 

SGDRBF5L SGD without sampling (5-minute linear interpolation) 

SGDRBF1C SGD without sampling (1-minute cubic interpolation) 

SGDRBF5C SGD without sampling (5-minute cubic interpolation) 

Lin Reg Linear regression 

Ran For Reg Random forest regression 

Dec Tree Reg Decision Tree regression 

TABLE III.  MAPE VALUES FOR ALGORITHMS 

Method 
Intensity Occupancy 

Loc1 Loc2 Loc1 Loc2 

SRS1L 0.2 0.76 0.82 0.76 

SRS5L 0.8 0.75 1.14 0.75 

SRS1C 0.48 0.52 0.96 0.52 

SRS5C 1.24 2.16 2.74 2.16 

SR1L 5.84 10.17 9.95 10.17 

SR5L 12.73 13.69 12.7 13.69 

SR1C 6.66 13.36 14.35 13.36 

SR5C 10.61 13.5 12.84 13.5 

SGDRBF1L 4.03 4.13 4.03 8.01 

SGDRBF5L 14.51 15.23 14.51 16.57 

SGDRBF1C 5.53 5.53 5.53 10.04 

SGDRBF5C 15.63 16.21 15.63 16.71 

Lin Reg 33.16 32.50 25.80  18.6 

Ran For Reg 36.06 21.35 20.04  14.63 

Dec Tree Reg 36.53 21.25 19.82  14.57 

 
Figures 6 and 7 show the predictive analysis on near-real-

time streaming data, demonstrating a strong alignment between 
predicted and actual values, akin to the results obtained from 
historical data. This approach exhibits potential for future 
extension to real-time applications, enabling on-the-fly analysis 
of streaming data. 

 

(a) 

 

(b) 

 

Fig. 6.  Prediction results on near-real-time streaming data for (a) 

intensidad and (b) ocupación for Location 1. 
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(a) 

 

(b) 

 

Fig. 7.  Prediction results on near-real-time streaming data for intensidad 

and ocupación for Location 2. 

C. Congestion Prediction Using CEP Rules 

Figure 8 shows an example use case of a CEP system with 
threshold values.  

 

 

Fig. 8.  An example use case for threshold values for congestion 

prediction. 

By generating a graphical representation and implementing 
the prescribed rule-based framework, potential congestion 
points can be effectively identified. From the rule set in Figure 
8, the graph in Figure 9 highlights these probable congestion 
instances. This can be extended to be implemented on a 
continuous stream of incoming data using CEP systems for 
large-scale and real-time complex event prediction. 

 

Fig. 9.  Congestion prediction for Location 1 using the rules in Figure 8. 

V. CONCLUSION AND FUTURE WORK 

This study showed that AdReSaR, the proposed algorithm, 
achieves satisfactory accuracy in predicting traffic intensity and 
occupancy levels. Its adaptability to non-stationary data leads 
to significant improvements in prediction performance over 
traditional regression methods. Beyond forecasting traffic 
parameters, such as intensity and occupancy, the proposed 
framework integrates a rule-based algorithm to predict complex 
events, such as congestion, providing actionable insights for 
traffic management systems. The findings suggest that 
adopting the proposed method could significantly enhance real-
time decision-making in traffic management systems. 
Ultimately, this research contributes to ongoing efforts to 
improve IoT applications in urban environments, paving the 
way for smarter cities and such real-time applications. 
Additionally, a simple rule-based approach was used to 
experiment with CEP, which can be scaled up.  

Future research can further explore the integration of real-
time data streams to improve the algorithm's responsiveness to 
dynamic traffic conditions. The proposed method can be 
adapted for use in other IoT applications, such as 
environmental monitoring and resource management. 
Collaborating with urban planners and data scientists could 
provide valuable insights into practical implementations. The 
rise of edge computing presents an opportunity to implement 
the proposed algorithm in decentralized environments, 
improving scalability and real-time processing. 

REFERENCES 

[1] B. Yan and G. Huang, "Supply chain information transmission based on 
RFID and internet of things," in 2009 ISECS International Colloquium 
on Computing, Communication, Control, and Management, Sanya, 
China, Aug. 2009, pp. 166–169, https://doi.org/10.1109/CCCM.2009. 
5267755. 

[2] L. Xiao and Z. Wang, "Internet of things: A new application for 
intelligent traffic monitoring system," Journal of networks, vol. 6, no. 6, 
pp. 887–894, 2011. 

[3] A. Gupta, R. Birkner, M. Canini, N. Feamster, C. Mac-Stoker, and W. 
Willinger, "Network Monitoring as a Streaming Analytics Problem," in 
Proceedings of the 15th ACM Workshop on Hot Topics in Networks, 



Engineering, Technology & Applied Science Research Vol. 15, No. 2, 2025, 20827-20834 20834  
 

www.etasr.com Srividhya & Kayarvizhy: Streamlined Traffic Prognosis using Flexible Reservoir Sampling and … 

 

Atlanta, GA USA, Nov. 2016, pp. 106–112, https://doi.org/10.1145/ 
3005745.3005748. 

[4] Y. Vivek, V. Ravi, A. A. Mane, and L. R. Naidu, "ATM Fraud Detection 
using Streaming Data Analytics." arXiv, Mar. 08, 2023, 
https://doi.org/10.48550/arXiv.2303.04946. 

[5] A. Moraru and D. Mladenić, "Complex event processing and data 
mining for smart cities," in 15th International Multiconference on 
Information Society, Ljubljana, Slovenia, 2012. 

[6] K. A. Alaghbari, M. H. M. Saad, A. Hussain, and M. R. Alam, 
"Complex event processing for physical and cyber security in 
datacentres - recent progress, challenges and recommendations," Journal 
of Cloud Computing, vol. 11, no. 1, Oct. 2022, Art. no. 65, 
https://doi.org/10.1186/s13677-022-00338-x. 

[7] J. Y. C. Wen et al., "A complex event processing architecture for energy 
and operation management: industrial experience report," in Proceedings 
of the 5th ACM international conference on Distributed event-based 
system, New York, NY, USA, Jul. 2011, pp. 313–316, 
https://doi.org/10.1145/2002259.2002300. 

[8] S. Shetty, "Disaster Management (Early Information about the 
Occurrence of Tsunami)," International Journal for Research in Applied 
Science and Engineering Technology, vol. 7, no. 4, pp. 3960–3963, Apr. 
2019, https://doi.org/10.22214/ijraset.2019.4662. 

[9] K. A. B. Hamou, Z. Jarir, and S. Elfirdoussi, "Design of a Machine 
Learning-based Decision Support System for Product Scheduling on 
Non Identical Parallel Machines," Engineering, Technology & Applied 
Science Research, vol. 14, no. 5, pp. 16317–16325, Oct. 2024, 
https://doi.org/10.48084/etasr.7934. 

[10] H. Cai, S. Shen, Q. Lin, X. Li, and H. Xiao, "Predicting the Energy 
Consumption of Residential Buildings for Regional Electricity Supply-
Side and Demand-Side Management," IEEE Access, vol. 7, pp. 30386–
30397, 2019, https://doi.org/10.1109/ACCESS.2019.2901257. 

[11] O. Etzion and P. Niblett, Event processing in action. Manning 
Publications, 2011. 

[12] J. Dunkel, A. Fernández, R. Ortiz, and S. Ossowski, "Event-driven 
architecture for decision support in traffic management systems," Expert 
Systems with Applications, vol. 38, no. 6, pp. 6530–6539, Jun. 2011, 
https://doi.org/10.1016/j.eswa.2010.11.087. 

[13] A. Khan, B. Lazzerini, G. Calabrese, and L. Serafini, "Soccer Event 
Detection," in Computer Science & Information Technology, Apr. 2018, 
pp. 119–129, https://doi.org/10.5121/csit.2018.80509. 

[14] M. Lima, R. Lima, F. Lins, and M. Bonfim, "Beholder – A CEP-based 
intrusion detection and prevention systems for IoT environments," 
Computers & Security, vol. 120, Sep. 2022, Art. no. 102824, 
https://doi.org/10.1016/j.cose.2022.102824. 

[15] Y. Wang and K. Cao, "A Proactive Complex Event Processing Method 
for Large-Scale Transportation Internet of Things," International 
Journal of Distributed Sensor Networks, vol. 10, no. 3, Mar. 2014, Art. 
no. 159052, https://doi.org/10.1155/2014/159052. 

[16] G. Lee, U. Yun, and K. H. Ryu, "Sliding window based weighted 
maximal frequent pattern mining over data streams," Expert Systems 
with Applications, vol. 41, no. 2, pp. 694–708, Feb. 2014, 
https://doi.org/10.1016/j.eswa.2013.07.094. 

[17] N. F. Omran, S. F. Abd-el Ghany, H. Saleh, A. A. Ali, A. Gumaei, and 
M. Al-Rakhami, "Applying Deep Learning Methods on Time-Series 
Data for Forecasting COVID-19 in Egypt, Kuwait, and Saudi Arabia," 
Complexity, vol. 2021, no. 1, 2021, Art. no. 6686745, 
https://doi.org/10.1155/2021/6686745. 

[18] P. Arumainayagam, E. Y. A. Charles, and S. R. Kodituwakku, "A 
Review on processing of data streams," Research Journal of Computer 
Systems Engineering - An International Journal, vol. 2, no. 2, pp. 73–77, 
Jun. 2011. 

[19] Q. Wang, B. Yan, H. Su, and H. Zheng, "Anomaly Detection for Time 
Series Data Stream," in 2021 IEEE 6th International Conference on Big 
Data Analytics (ICBDA), Xiamen, China, Mar. 2021, pp. 118–122, 
https://doi.org/10.1109/ICBDA51983.2021.9402957. 

[20] A. Fais, G. Lettieri, G. Procissi, S. Giordano, and F. Oppedisano, "Data 
Stream Processing for Packet-Level Analytics," Sensors, vol. 21, no. 5, 
Jan. 2021, Art. no. 1735, https://doi.org/10.3390/s21051735. 

[21] Q. Zhang, C. Pang, S. Mcbride, D. Hansen, Charles Cheung, and M. 
Steyn, "Towards Health Data Stream Analytics," in IEEE/ICME 
International Conference on Complex Medical Engineering, Gold Coast, 
Australia, Jul. 2010, pp. 282–287, https://doi.org/10.1109/ICCME.2010. 
5558827. 

[22] C. Q. Jin, W. N. Quan, and A. Y. Zhou, "Analysis and management of 
streaming data: A survey," Journal of Software, vol. 15, no. 8, pp. 1172–
1181, Aug. 2004. 

[23] J. C. Hardin, "Introduction to Time Series Analysis," National 
Aeronautics and Space Administration, NAS 1.61:1145, Mar. 1986. 
[Online]. Available: https://ntrs.nasa.gov/citations/19860014920. 

[24] W. F. Velicer and J. L. Fava, "Time series analysis," Research methods 
in psychology, vol. 2, 2003. 

[25] A. S. Singh and M. B. Masuku, "Sampling techniques & determination 
of sample size in applied statistics research: An overview," International 
Journal of Economics, Commerce and Management, vol. 2, no. 11, 
2014. 

[26] S. Ulas and U. M. Diwekar, "Role of sampling in process design, 
optimization and control," presented at the AIChE Annual Meeting, 
Nov. 2006. 

[27] J. S. Vitter, "Random sampling with a reservoir," ACM Transactions on 
Mathematical Software, vol. 11, no. 1, pp. 37–57, Mar. 1985, 
https://doi.org/10.1145/3147.3165. 

[28] Y. Tillé, "A general result for selecting balanced unequal probability 
samples from a stream," Information Processing Letters, vol. 152, Dec. 
2019, Art. no. 105840, https://doi.org/10.1016/j.ipl.2019.105840. 

[29] Z. Wen, D. L. Quoc, P. Bhatotia, R. Chen, and M. Lee, "ApproxIoT: 
Approximate Analytics for Edge Computing," in 2018 IEEE 38th 
International Conference on Distributed Computing Systems (ICDCS), 
Vienna, Jul. 2018, pp. 411–421, https://doi.org/10.1109/ICDCS.2018. 
00048. 

[30] "Traffic Monitoring XML Data," informo.madrid.es. https://informo. 
madrid.es/informo/tmadrid/pm.xml. 

[31] S. Mehrmolaei and M. R. Keyvanpour, "Time series forecasting using 
improved ARIMA," in 2016 Artificial Intelligence and Robotics 
(IRANOPEN), Qazvin, Iran, Apr. 2016, pp. 92–97, 
https://doi.org/10.1109/RIOS.2016.7529496. 

[32] A. J. Smola and B. Schölkopf, "A tutorial on support vector regression," 
Statistics and Computing, vol. 14, no. 3, pp. 199–222, Aug. 2004, 
https://doi.org/10.1023/B:STCO.0000035301.49549.88. 

[33] M. J. Sax, "Apache Kafka," in Encyclopedia of Big Data Technologies, 
S. Sakr and A. Zomaya, Eds. Springer International Publishing, 2018, 
pp. 1–8. 

[34] A. de Myttenaere, B. Golden, B. Le Grand, and F. Rossi, "Mean 
Absolute Percentage Error for regression models," Neurocomputing, vol. 
192, pp. 38–48, Jun. 2016, https://doi.org/10.1016/j.neucom.2015.12. 
114. 

[35] A. Y. Sun, Z. Zhong, H. Jeong, and Q. Yang, "Building complex event 
processing capability for intelligent environmental monitoring," 
Environmental Modelling & Software, vol. 116, pp. 1–6, Jun. 2019, 
https://doi.org/10.1016/j.envsoft.2019.02.015. 

[36] B. Khazael, H. T. Malazi, and S. Clarke, "Complex Event Processing in 
Smart City Monitoring Applications," IEEE Access, vol. 9, pp. 143150–
143165, 2021, https://doi.org/10.1109/ACCESS.2021.3119975. 

[37] T. Beckers, "An Introduction to Gaussian Process Models." arXiv, Feb. 
10, 2021, https://doi.org/10.48550/arXiv.2102.05497. 

[38] L. Bottou, "Stochastic Gradient Descent Tricks," in Neural Networks: 
Tricks of the Trade, vol. 7700, G. Montavon, G. B. Orr, and K. R. 
Müller, Eds. Springer Berlin Heidelberg, 2012, pp. 421–436. 

[39] R. G. Brereton and G. R. Lloyd, "Support Vector Machines for 
classification and regression," The Analyst, vol. 135, no. 2, pp. 230–267, 
2010, https://doi.org/10.1039/B918972F. 

[40] K. Thurnhofer-Hemsi, E. López-Rubio, M. A. Molina-Cabello, and K. 
Najarian, "Radial basis function kernel optimization for Support Vector 
Machine classifiers." arXiv, Jul. 16, 2020, https://doi.org/10.48550/ 
arXiv.2007.08233. 


