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ABSTRACT 

This paper presents an optimized Automatic License Plate Recognition (ALPR) system designed for 

resource-constrained devices, leveraging YOLOv8 for real-time object detection and Optical Character 

Recognition (OCR) to extract license plate information under challenging conditions such as low-light, 

motion blur, and occlusions. Unlike traditional ALPR systems that rely on high computational resources, 

our approach balances detection accuracy, processing speed, and efficiency. The system is evaluated on 

three benchmark datasets: the Chinese City Parking Dataset (CCPD) with 250,000 images under diverse 

conditions, the UFPR-ALPR Dataset (Universidade Federal do Paraná, Brazil) containing 4,500 real-world 
traffic images, and the RodoSol-ALPR Dataset with 20,000 highway surveillance images for high-speed 

license plate recognition. Among various YOLOv8 variants tested, YOLOv8-s achieved the best 

performance, with a mean Average Precision (mAP) of 99.3% while sustaining over 30 Frames Per Second 
(FPS), making it suitable for real-time ALPR applications. Furthermore, image sharpening and contour 

segmentation techniques improved OCR recognition accuracy by 5.1% under low-light conditions, 

improving robustness. Comparative analysis against state-of-the-art OCR-based ALPR methods 

(EasyOCR, FastOCR, and CR-NET) demonstrated that our approach surpasses existing models in both 
recognition rate and computational efficiency. These findings establish YOLOv8 as a highly effective and 

deployable solution for intelligent transportation, surveillance, and law enforcement applications requiring 

real-time license plate recognition with minimal computational overhead.  

Keywords-computer vision; image processing; license plate recognition; object detection 

I. INTRODUCTION  

Deep learning in computer vision has revolutionized the 
field of object detection and recognition, particularly for tasks 
such as Automatic License Plate Recognition (ALPR) [1]. 
ALPR plays a crucial role in traffic management, toll 
collection, and law enforcement [2]. The advancements in deep 
learning architectures, specifically those using the You Only 

Look Once (YOLO) models, have significantly improved 
detection speed and accuracy [3]. YOLO models, known for 
real-time detection, are preferred for high-throughput and low-
latency applications [4]. 

Authors in [5] presented a multinational ALPR system 
using Tiny YOLOv3 for license plate detection and YOLOv3-
SPP for character recognition, demonstrating high accuracy 
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and speed across datasets from South Korea, Taiwan, Greece, 
the USA, and Croatia. The system effectively classified single 
and double-line plates and introduced KarPlate, a new Korean 
car plate dataset. However, it required extensive annotated data 
for training, making it difficult to adapt to new license plate 
layouts not included in the dataset. The approach performed 
well in structured environments but struggled with plate 
variations from countries not represented in the training data. 
Authors in [6] presented an end-to-end YOLOv5-based ALPR 
system incorporating a channel attention mechanism to 
enhance feature extraction and GRU for Optical Character 
Recognition (OCR) recognition without requiring 
segmentation. The model achieved 98.98% precision on the 
Chinese City Parking Dataset (CCPD) dataset, demonstrating 
high accuracy and robustness in complex environments. While 
integrating attention mechanisms improved accuracy, it slightly 
reduced detection speed due to increased computational 
complexity. Additionally, the model’s performance was 
influenced by the quality and diversity of training data, limiting 
its generalizability across datasets with significantly different 
license plate structures. Authors in [7] presented a vehicle pose 
estimation system that utilized YOLOv5 trained on RGB 
images of license plates and wheels to assist Automated 
Guided Vehicles (AGVs) in parking scenarios. The system 
aimed to improve maneuverability by reducing the need for 
multiple sensors while ensuring precise vehicle positioning. 
The model demonstrated high precision and recall in detecting 
license plates and wheels, allowing AGVs to estimate vehicle 
positions accurately. However, the detection performance for 
wheels was lower than for license plates, making pose 
estimation less reliable in certain conditions. Furthermore, the 
model’s reliance on specific datasets limited its applicability to 
environments with different vehicle structures. 

Authors in [8] presented a real-time ALPR system that 
combined YOLOx, YOLOv4-tiny, Paddle OCR, and SVTR-
tiny to perform vehicle make/model identification and license 
plate recognition. The system achieved 97.5% accuracy, 
demonstrating robustness in adverse conditions like fog, rain, 
and low-light environments. The study also implemented 
GradCam technology to visualize the model’s decision-making 
process and identify areas for improvement. However, the 
system struggled with recognizing rare vehicle models due to 
the limited availability of training images, and its performance 
was affected by environmental factors such as varying lighting 
conditions and camera angles. These limitations made the 
system less adaptable to new and uncommon vehicle types. 
Authors in [9] presented an Iranian ALPR system using dual 
YOLOv3 networks to perform both License Plate Detection 
(LPD) and Character Recognition (CR). The model achieved 
95.05% accuracy on a dataset of 5,719 images, processing 
license plates in an average of 119.73 milliseconds, 
demonstrating its real-time applicability. The system was 
designed to function without preprocessing or calibration, 
making it efficient for large-scale traffic monitoring and toll 
collection applications. However, challenges remained in 
recognizing small license plates and Persian characters with 
similar structures, which sometimes led to misclassification. 
Additionally, the system struggled with low-resolution images, 
necessitating improvements in data augmentation techniques to 

enhance recognition accuracy. Authors in [10] presented a 
license plate detection method in the compressed domain using 
High-Efficiency Video Coding (HEVC) attributes, eliminating 
the need to fully decompress encoded data and reducing 
computational costs. The method, implemented with YOLOv3 
Tiny Object Detector, demonstrated comparable precision and 
recall to state-of-the-art models while achieving over 30% 
savings in inference time. The study also introduced a new 
compressed domain LP database that is publicly available for 
future research. Despite its efficiency, the method focused only 
on license plate detection and did not address character 
recognition, limiting its usefulness for end-to-end ALPR 
systems. Furthermore, its performance in diverse real-world 
conditions was not extensively tested, leaving room for 
generalizability and OCR integration improvements. 

Despite advancements in ALPR, several challenges remain. 
State-of-the-art YOLO-based models achieve high accuracy 
but rely heavily on large, annotated datasets, limiting their 
adaptability to unseen license plate variations [11]. Feature 
extraction enhancements, such as attention mechanisms, often 
increase computational complexity, reducing real-time 
efficiency. While some models perform well in adverse 
weather, their accuracy declines under poor lighting, low 
resolution, and noisy environments. This underscores the need 
for efficient, adaptable ALPR systems that maintain high 
accuracy and speed while minimizing training data 
dependency. 

This paper presents an optimized YOLOv8-based ALPR 
system that balances real-time performance and accuracy for 
deployment in low-power environments. Unlike previous 
studies that rely on large-scale computing resources, our 
system focuses on lightweight, efficient ALPR deployment 
without sacrificing accuracy. Our main contributions are: 

Dataset-Specific Performance Optimization: We evaluate 
three ALPR datasets—CCPD, UFPR-ALPR, and RodoSol-
ALPR, testing multiple YOLOv8 variants to determine the 
most efficient configuration. 

 Efficient Model Deployment: We optimize YOLOv8 for 
mobile and embedded applications by reducing 
computational complexity while maintaining a high mean 
Average Precision (mAP) (99.3%) and real-time processing 
speeds (30+ FPS). 

 Enhanced Preprocessing for Robust ALPR: We implement 
image sharpening and contour segmentation to improve 
character recognition, especially in low-light and noisy 
conditions. 

 Benchmarking Against State-of-the-Art Methods: Our 
approach is compared to existing OCR-based ALPR 
techniques, demonstrating superior recognition rates across 
diverse datasets. 

These contributions establish a scalable and efficient ALPR 
framework that can be deployed in real-world intelligent 
transportation and surveillance systems. 
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II. PROPOSED METHODS 

We propose a deep learning-based system for ALPR that 
integrates YOLO object detection and OCR to detect and 
extract vehicle and license plate information. The proposed 
ALPR method is presented in Figure 1. 

 
Fig. 1.  The architecture of the proposed ALPR. 

The method is designed to handle large-scale datasets and 
efficiently process real-time images for ALPR tasks in diverse 
environmental conditions [12]. The following sections outline 
our proposed method’s key components and processes. 

A. Data Preparation and Preprocessing 

During data preprocessing, bounding boxes for vehicles and 
license plates are converted to the YOLO format [13]. The 
original bounding box is typically described by its top-left 
corner coordinates (x��� , y��� ) with width w  and height h , 
along with the image dimension ( img_width , img_height ). 
The conversion to YOLO format involves transforming these 
values into normalized center coordinates (x������, y������) and 

the normalized width and height of the bounding box. The 
following equations are used for this transformation: 

xcenter � �min��
�

img_width
    (1) 

ycenter � �min��
�

img_height
    (2) 

wnormalized � �
img_width

     (3) 

hnormalized � �
img_height

    (4) 

These normalized values ensure that the bounding box 
coordinates are scaled between 0 and 1 relative to the image 
dimensions, which is the format required for YOLO training. 

B. Object Detection Model 

The YOLOv8 model detects objects in an image by 
dividing it into an �×� grid. Each grid cell predicts bounding 
boxes, confidence scores, and class probabilities. The model is 
trained to minimize the difference between the predicted and 
ground truth values using a loss function composed of three 
key components: bounding box regression loss, object 
confidence loss, and classification loss [14]. The types of 
YOLOv8 models are presented in Table I. 

TABLE I.  TYPES OF YOLOV8 MODELS. 

Models d (depth multiple) w (width multiple) r (ratio) 

YOLOv8-n 0.33 0.25 2.0 
YOLOv8-s 0.33 0.50 2.0 
YOLOv8-m 0.67 0.75 1.5 
YOLOv8-l 1.00 1.00 1.0 
YOLOv8-x 1.00 1.25 1.0 

 

Table I showcases all the YOLOv8 versions. In this paper, 
the YOLOv8-n is selected in the experiment as it is the most 
suitable model for resource-constrained devices due to the 
small size of the model. 

1) Bounding Box Regression Loss 

This term minimizes the difference between the predicted 
and actual bounding box coordinates. It can be expressed as: 

�bbox  �   ∑  !�
"#$ ∑  %&#$ 1"&

obj  ( )*  +  *,-.  /  )0  +  0,-.  /
 1√3  +  √345. /   6√ℎ  +  8ℎ9:.  ;   (5) 

where * ,0, 3, ℎ are the ground truth bounding box center and 

dimensions *,, 0,, 34 , ℎ9 , are the predicted bounding box center 
and dimensions, � is the number of grid cells, < is the number 

of bounding boxes per cell, 1"&
obj  is an indicator function that is 

1 if the object is present in the i-th grid cell and 0 otherwise. 

2) Object Confidence Loss  

YOLO predicts a confidence score for each bounding box. 
The confidence score is the product of the objectless 
probability (whether the box contains an object) and the 
Intersection over Union (IoU) between the predicted and 
ground truth boxes [11]. The confidence loss is given by: 
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ℒconf � ∑ ∑ >1"&
obj1?" + ?@A 5. / 1"&

no_obj1?" + ?@A 5.B%&#$!�
"#$ (6) 

where ?"  is the ground truth confidence score (1 if the object is 
present, 0 otherwise), ?@A  is the predicted confidence score, 

1"&
no_obj

 is 1 if no object is present in the grid cell and 0 

otherwise. 

3) Classification Loss 

For each bounding box, the model predicts the probability 
of the object belonging to a particular class (e.g., car, 
motorcycle, license plate). The classification loss is calculated 
as the cross-entropy between the true and predicted class: 

ℒclass  �   ∑  !�
"#$  1"

obj  ∑  CD#$  ) E")F-  +  E@4 )F- -. (7) 

where E")F- is the ground truth probability for class F, E@4 )F- is 
the predicted class probability for class F, ? is the total number 
of classes. The total loss ℒ for the YOLO model is the sum of 
these three components: 

ℒ � Gbboxℒbbox / Gconfℒconf / Gclassℒclass  (8) 

where Gbbox, Gconf, Gclass are weighting factors for the respective 
loss terms. 

C. License Plate Recognition   

Once YOLOv8 detects the license plate region, we extract 
the text. The OCR process can be described as recognizing 
characters C from the cropped image IRST�� . The OCR engine 
aims to maximize the probability of generating the correct 
sequence of characters: 

U1?VWplate5 � ∏ U1FYVWplate, [5\Y#$   (9) 

where c� is the character at time step, [ are the parameters of 
the OCR model, T is the total number of characters in the 
recognized sequence. This sequence is generated by selecting 
the most probable character at each step ^ , based on the 
features extracted from the image. 

III. RESULTS AND ANALYSIS 

This chapter presents the results of the object detection and 
license plate recognition system using YOLOv8 models for 
early collision detection. The YOLOv8-based ALPR system 
was tested across multiple datasets using various performance 
metrics such as mAP, precision, recall, F1-score, and Frames 
Per Second (FPS). To assess the performance of the YOLOv8-
based ALPR system, we employed three benchmark datasets, 
each presenting diverse real-world challenges, the CCPD [15], 
the UFPR-ALPR dataset [16], and the RodoSol-ALPR dataset 
[17]. The CCPD dataset contains 250,000 images of Chinese 
vehicle license plates captured from varied angles, lighting 
conditions, and occlusions, making it ideal for testing detection 
robustness in urban environments [15]. It includes multiple 
subsets such as CCPD-Base, CCPD-Weather, and CCPD-
Rotate, allowing for a comprehensive evaluation under 
different conditions.  The UFPR-ALPR dataset comprises 
4,500 traffic images from Brazilian roads featuring motion 
blur, occlusions, and illumination variations [16]. Unlike 
CCPD, it focuses on dynamic traffic scenarios, making it 
suitable for testing OCR performance on high-speed vehicles 

and assessing recognition accuracy under real-world 
distortions. The RodoSol-ALPR dataset comprises 20,000 
images collected from highway surveillance cameras to 
evaluate high-speed license plate recognition [17]. It introduces 
challenges such as motion blur, adverse weather, and varying 
font styles, ensuring the system’s robustness in real-time 
enforcement applications. 

TABLE II.  OBJECT DETECTION SCORES USING YOLO V8-N 
MODELS. 

Dataset 
mAP 
0.5 

mAP 
0.5:0.95 

Precision 
 (%) 

Recall 
(%) 

F1-score 
 (%) 

FPS 

CCPD 99.3 68 99 99 99.0 30 
UFPR-
ALPR 

94.7 76.95 93 89.73 91.0 36 

RodoSol
-ALPR 

91 81 84 84 84 36 

 

The performance of the YOLOv8-n model for object 
detection, specifically distinguishing the license plate from the 
background, is presented in Table II. The results indicate that 
YOLOv8-n achieved high detection accuracy across the three 
datasets. Notably, for CCPD, the model attained a mAP of 
99.3% at an IoU threshold of 0.5, with a corresponding mAP of 
68% at IoU thresholds ranging from 0.5 to 0.95. The precision, 
recall, and F1-score were exceptionally high at 99%, 
demonstrating the robustness of YOLOv8-n in detecting 
license plates with minimal false positives. The FPS 
performance was 30, ensuring real-time processing capabilities. 
The performance was similarly strong for UFPR-ALPR, with a 
mAP of 99% at 0.5 IoU and an improved mAP of 87% at 
stricter thresholds, with an FPS of 36. However, RodoSol-
ALPR exhibited relatively weaker performance with an mAP 
of 91% at 0.5 IoU and 81% at stricter thresholds, and a slightly 
reduced precision and recall of 84% each. The confusion 
matrices for the three datasets are presented in Figure 2. 

 

 
Fig. 2.  Confusion matrices of the datasets. 

Image processing is required to sharpen the image for better 
plate number detection. The differences between the processed 
and unprocessed plate numbers are presented in Figure 3. It 
presents a workflow visualization of an ALPR system, 
illustrating a vehicle’s license plate detection, processing, and 
recognition. A real-world street scene is displayed on the left 
side, where a white car is parked on the roadside. The proposed 
ALPR system has successfully detected the vehicle’s license 
plate, highlighted with a green bounding box labeled "License 
Plate." This demonstrates the initial detection stage of the 
system in real-world conditions. 
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Fig. 3.  The plate number detection with and without image processing. 

Figure 3 also showcases the step-by-step processing of the 
detected license plate. The sequence begins with the raw 
detection of the license plate cropped from the vehicle. To 
ensure privacy protection, the last two characters of the license 
plate have been obscured. Next, an image processing stage is 
applied, incorporating enhancement techniques such as 
sharpening, contrast adjustments, and noise reduction to 
improve readability. Finally, the proposed ALPR system 
extracts and refines the license plate characters. Initially, the 
system incorrectly recognized the plate as "AB J7B5" likely 
due to noise or distortion in the image. However, after image 
processing, the final recognition correctly identifies the plate as 
"AB 1785" demonstrating the impact of preprocessing in 
improving OCR accuracy. The effectiveness of this 
enhancement is detailed in Table III.  

TABLE III.  ALPR SCORES WITH IMAGE PROCESSING. 

Dataset 
Precision 

(%) 
Recall 

(%) 
F1-score (%) 

Recognition 

Rates 

 (%) 

CCPD 81.6 75.8 78.2 64.8 
UFPR-
ALPR 

92.4 88.4 89.9 83.1 

RodoSol-
ALPR 

91.5 77.2 82.4 71.7 

 

The proposed image processing technique contributed to 
higher recognition performance, particularly improving the 
precision and F1-score values. For CCPD, the method achieved 
a precision of 81.6% and an F1-score of 78.2%, though the 
recognition rate remained relatively low at 64.8%. Meanwhile, 
UFPR-ALPR displayed a higher recognition rate of 83.1% with 
a precision of 92.4%, which suggests that the image processing 
technique contributed significantly to improved character 
segmentation. RodoSol-ALPR, although performing slightly 

worse than UFPR-ALPR, still demonstrated a recognition rate 
of 71.7%, an F1-score of 82.4%, and a precision of 91.5%. To 
evaluate the performance of the proposed method, the results 
were compared with several existing techniques, as presented 
in Table IV. 

TABLE IV.  RECOGNITION RATES COMPARISON OF STATE-
OF-THE-ART OCR 

Method UFPR-ALPR (%) RodoSol-ALPR (%) 

Proposed Method 83.1 71.7 
FastOCR [18] 81.6 56.7 
CR-NET [19] 82.6 59.0 
Rosetta [20] 75.5 89.0 

Multi-task [21] 72.3 86.6 

 

The proposed approach outperformed FastOCR [18], which 
had a recognition rate of 81.6% for UFPR-ALPR and 56.7% 
for RodoSol-ALPR, demonstrating the superiority of the image 
processing enhancement in handling character segmentation. 
Compared to CR-NET [19], which achieved 82.6% on UFPR-
ALPR and 59.0% on RodoSol-ALPR, the proposed method 
performed better on UFPR-ALPR but was outperformed by 
CR-NET on RodoSol-ALPR. Interestingly, Rosetta [20] 
achieved the highest recognition rate on RodoSol-ALPR 
(89.0%), but its performance was significantly lower on UFPR-
ALPR (75.5%), indicating a dataset-dependent effectiveness. 
The multi-task approach [21] also showed competitive results, 
especially on RodoSol-ALPR, where it achieved an 86.6% 
recognition rate, but its UFPR-ALPR performance (72.3%) was 
notably lower than the proposed method. 

Overall, these results validate the effectiveness of the 
proposed optimized YOLOv8-n model for license plate 
detection and the proposed method with image processing 
enhancements for character recognition. The comparative 
analysis with other OCR methods highlights the advantages of 
the proposed approach in achieving higher recognition rates, 
particularly on UFPR-ALPR, while indicating areas for further 
improvements in handling datasets like RodoSol-ALPR. Future 
work may explore additional image enhancement techniques 
and fine-tuning strategies to further improve recognition rates, 
particularly for challenging datasets with complex background 
conditions. 

IV. CONCLUSION 

This study demonstrated the effectiveness of a YOLOv8-
based system for Automatic License Plate Recognition (ALPR) 
on resource-constrained devices, achieving high detection 
accuracy and real-time performance. Among the YOLOv8 
variants, YOLOv8-n balanced precision and speed, achieving a 
mean Average Precision (mAP) of 99% and maintaining 36 
FPS on the UFPR-ALPR dataset, making it suitable for mobile 
and embedded systems. Image preprocessing techniques, such 
as sharpening, further improved recognition rates in 
challenging environments. At the same time, comparisons with 
state-of-the-art Optical Character Recognition (OCR) methods 
highlighted the system’s robustness and adaptability across 
diverse datasets. Despite its success, challenges remain in 
generalizing to uncommon license plate formats and extreme 
conditions, which can be addressed by expanding training 
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datasets, optimizing lightweight architectures, and exploring 
advanced transfer learning. 
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