Modification of Sugarcane Bagasse Fiber: A Comparative Study of Alkali and TEMPO Treatments

Authors

  • Muhammad Pramudya Renandito Department of Mechanical and Industrial Engineering, Universitas Negeri Malang, Indonesia
  • Heru Suryanto Department of Mechanical and Industrial Engineering, Universitas Negeri Malang, Indonesia
  • Aminnudin Aminnudin Department of Mechanical and Industrial Engineering, Universitas Negeri Malang, Indonesia
  • Gaguk Jatisukamto Department of Mechanical Engineering, Universitas Jember, Jember, Indonesia
  • Fajar Nusantara Department of Mechanical and Industrial Engineering, Universitas Negeri Malang, Indonesia
  • Azlin Fazlina Osman Faculty of Chemical Engineering Technology, Universiti Malaysia Perlis, Kompleks Pengajian Taman Muhibbah, Jejawi, Perlis, Malaysia
  • Uun Yanuhar Study Program of Aquatic Science Management, FPIK, Brawijaya University, Indonesia
Volume: 15 | Issue: 3 | Pages: 22394-22400 | June 2025 | https://doi.org/10.48084/etasr.10517

Abstract

Bagasse fiber, a byproduct of the sugarcane industry, has the potential to be a valuable resource in various industrial applications due to its abundance. This study evaluates the effects of 6% NaOH and TEMPO treatments on the structural, mechanical, and thermal properties of sugarcane bagasse fibers. Sugarcane bagasse fibers were analyzed using Scanning Electron Microscopy (SEM), X-Ray Diffraction (XRD), tensile testing, Fourier Transform Infrared Spectroscopy (FTIR), and Thermogravimetric Analysis (TGA). The results indicate that fiber treatment using NaOH significantly increases the Crystalline Index (CI) from 50.95% to 58.38%, while TEMPO oxidation achieves 52.34%. The mechanical testing reveals that tensile stress increases by 85.26 MPa (6% NaOH) and 141.10 MPa (TEMPO), showcasing superior fiber compatibility with TEMPO. FTIR analysis attests to the removal of hemicellulose and lignin, as well as modifications in functional groups, while TGA demonstrates enhanced thermal stability with NaOH-treated fibers showing greater resistance to thermal degradation compared to TEMPO-treated fibers. These findings underscore the potential of chemical treatments to optimize sugarcane bagasse fiber properties for sustainable applications. By optimizing its natural characteristics through targeted chemical modifications, this study provides valuable insights into utilizing bagasse fiber as a renewable alternative, reducing reliance on synthetic fibers and mitigating environmental impacts.

Keywords:

alkali, bagasse fiber, Fourier Transform Infrared Spectroscopy (FTIR), tensile test, TEMPO, thermogravimetric analysis (TGA)

Downloads

Download data is not yet available.

References

S. Nafisah, A. Nuraisyah, and T. B. Irawan, "Respon Pertumbuhan Vegetatif Tanaman Tebu Terhadap Sinergitas Mikrobia dalam Meningkatkan Produksi Tanaman Tebu di Kejayan Bondowoso," Agropross : National Conference Proceedings of Agriculture, pp. 281–287, Sep. 2023. DOI: https://doi.org/10.25047/agropross.2023.469

N. Bheel, A. S. Memon, I. A. Khaskheli, N. M. Talpur, S. M. Talpur, and M. A. Khanzada, "Effect of Sugarcane Bagasse Ash and Lime Stone Fines on the Mechanical Properties of Concrete," Engineering, Technology & Applied Science Research, vol. 10, no. 2, pp. 5534–5537, Apr. 2020. DOI: https://doi.org/10.48084/etasr.3434

H. Dewajani, W. Zamrudy, Z. Irfin, D. Ningtyas, and N. Mujibur Ridlo, "Utilization of Indonesian sugarcane bagasse into bio asphalt through pyrolysis process using zeolite-based catalyst," Materials Today: Proceedings, vol. 87, pp. 383–389, 2023. DOI: https://doi.org/10.1016/j.matpr.2023.04.171

I. Hardiatama, A. Enruico, Y. Hermawan, M. Trifiananto, and S. N. H. Syuhri, "Analysis of Biomass Briquette Mixed Bagasse and Sugarcane Peel on the Performance of Forced Top-Lit Updraft Gasifier Stove," Journal of Mechanical Engineering Science and Technology (JMEST), vol. 8, no. 2, Oct. 2024, Art. no. 322. DOI: https://doi.org/10.17977/um016v8i22024p322

R. W. Permana, S. Hadi, and B. C. M. Dana, "Analysis of ballistic capability in making bulletproof multilayers using woven Ramie fiber, hardfacing metal with epoxy matrix for bulletproof vests," Journal of Mechanical Engineering Science and Technology (JMEST), vol. 8, no. 1, pp. 92–107, Jul. 2024. DOI: https://doi.org/10.17977/um016i12024p092

T. Setyayunita, H. Suryanto, and A. Aminnudin, "The Influence of Sodium Chloride Treatment on the Sisal Fiber Bundle’s Properties," Journal of Mechanical Engineering Science and Technology (JMEST), vol. 8, no. 2, Nov. 2024, Art. no. 532. DOI: https://doi.org/10.17977/um016v8i22024p532

S. Palanisamy, T. M. Murugesan, M. Palaniappan, C. Santulli, and N. Ayrilmis, "Fostering sustainability: The environmental advantages of natural fiber composite materials – a mini review," Environmental Research and Technology, vol. 7, no. 2, pp. 256–269, Jun. 2024, https://doi.org/10.35208/ert.1397380. DOI: https://doi.org/10.35208/ert.1397380

M. Samanth and K. Subrahmanya Bhat, "Conventional and unconventional chemical treatment methods of natural fibres for sustainable biocomposites," Sustainable Chemistry for Climate Action, vol. 3, 2023, Art. no. 100034. DOI: https://doi.org/10.1016/j.scca.2023.100034

A. A. Mubarak, R. A. Ilyas, A. H. Nordin, N. Ngadi, and M. F. M. Alkbir, "Recent developments in sugarcane bagasse fibre-based adsorbent and their potential industrial applications: A review," International Journal of Biological Macromolecules, vol. 277, 2024, Art. no. 134165. DOI: https://doi.org/10.1016/j.ijbiomac.2024.134165

M. A. Mahmud and F. R. Anannya, "Sugarcane bagasse - A source of cellulosic fiber for diverse applications," Heliyon, vol. 7, no. 8, Aug. 2021, Art. no. e07771. DOI: https://doi.org/10.1016/j.heliyon.2021.e07771

O. C. Omiyale et al., "Effect of alkaline and steam pre-treatment on saccharification of corn cob and production of cellullase from fungal consortium," European Journal of Sustainable Development Research, vol. 7, no. 4, Oct. 2023, Art. no. em0238. DOI: https://doi.org/10.29333/ejosdr/13817

D. O. Bichang’a and I. O. Oladele, "Characterisation of alkali-treated novel cellulosic fibres derived from Dombeya Buettneri plant as a potential reinforcement for polymer composites," Wood Material Science & Engineering, pp. 1–14, Aug. 2024. DOI: https://doi.org/10.1080/17480272.2024.2392210

X. Sang et al., "Mechanism and kinetics studies of carboxyl group formation on the surface of cellulose fiber in a TEMPO-mediated system," Cellulose, vol. 24, no. 6, pp. 2415–2425, Jun. 2017. DOI: https://doi.org/10.1007/s10570-017-1279-9

R. Pönni, T. Pääkkönen, M. Nuopponen, J. Pere, and T. Vuorinen, "Alkali treatment of birch kraft pulp to enhance its TEMPO catalyzed oxidation with hypochlorite," Cellulose, vol. 21, no. 4, pp. 2859–2869, Aug. 2014. DOI: https://doi.org/10.1007/s10570-014-0278-3

A. F. Alphanoda, E. Prasetyo, and W. Broto, "Photocatalytic Scheme with External Magnetic Field on Coffee Waste in Hydrogen Production," Journal of Mechanical Engineering Science and Technology (JMEST), vol. 7, no. 2, Nov. 2023, Art. no. 181. DOI: https://doi.org/10.17977/um016v7i22023p181

A. Zuraida, H. Anuar, and Y. Yusof, "The Study of Biodegradable Thermoplastics Sago Starch," Key Engineering Materials, vol. 471–472, pp. 397–402, Feb. 2011. DOI: https://doi.org/10.4028/www.scientific.net/KEM.471-472.397

C. S. Lima, S. C. Rabelo, P. N. Ciesielski, I. C. Roberto, G. J. M. Rocha, and C. Driemeier, "Multiscale Alterations in Sugar Cane Bagasse and Straw Submitted to Alkaline Deacetylation," ACS Sustainable Chemistry & Engineering, vol. 6, no. 3, pp. 3796–3804, Mar. 2018. DOI: https://doi.org/10.1021/acssuschemeng.7b04158

K. Wunna, K. Nakasaki, J.L. Auresenia, L.C. Abella , and P.D. Gaspillo, "Effect of alkali pretreatment on removal of lignin from sugarcane bagasse," Chemical Engineering Transactions, vol. 56, pp. 1831–1836, Apr. 2017.

V. M. Moo-Huchin et al., "Extraction and characterization of natural cellulosic fiber from Jipijapa (Carludovica palmata)," Chiang Mai Journal of Science, vol. 46, pp. 579-591, May 2019.

S. Kundu, D. Mitra, and M. Das, "Influence of chlorite treatment on the fine structure of alkali pretreated sugarcane bagasse," Biomass Conversion and Biorefinery, vol. 13, no. 2, pp. 567–581, Jan. 2023. DOI: https://doi.org/10.1007/s13399-020-01120-2

G. S. Mohamed Allam, A. M. Abd El-Aal, M. K. Sayed Morsi, and E. A. E.-S. Abd El-Salam, "Producing Dietary Fibers from Sugarcane Bagasse Using Various Chemical Treatments and Evaluation of their Physicochemical, Structural, and Functional Properties," Applied Science and Engineering Progress, vol. 17, no. 3, Jun. 2024, Art. no. 7381. DOI: https://doi.org/10.14416/j.asep.2024.06.002

H. Suryanto, S. Sukarni, Y. Rohmat, A. Pradana, U. Yanuhar, and K. Witono, "Effect of mercerization on properties of mendong (Fimbristylis globulosa) fiber," Songklanakarin Journal of Science and Technology, vol. 41, 2019, Art. no. 624630.

E. Widodo, Pratikto, Sugiarto, and T. D. Widodo, "Comprehensive investigation of raw and NaOH alkalized sansevieria fiber for enhancing composite reinforcement," Case Studies in Chemical and Environmental Engineering, vol. 9, Jun. 2024, Art. no. 100546. DOI: https://doi.org/10.1016/j.cscee.2023.100546

A. Bartos et al., "Alkali treatment of lignocellulosic fibers extracted from sugarcane bagasse: Composition, structure, properties," Polymer Testing, vol. 88, 2020, Art. no. 106549. DOI: https://doi.org/10.1016/j.polymertesting.2020.106549

R. I. Ramadhan et al., "Effect of Addition Titanium Dioxide Nanoparticle on Properties of Pineapple Leaf Fiber Mediated TEMPO Oxidation Oxidation," Journal of Mechanical Engineering Science and Technology (JMEST), vol. 8, no. 1, May 2024, Art. no. 82. DOI: https://doi.org/10.17977/um0168i12024p082

H. Rahmani Khoshk and M. Moeenfard, "TEMPO-oxidized cellulose fiber from spent coffee ground: Studying their properties as a function of particle size," Heliyon, vol. 11, no. 1, Jan. 2025, Art. no. e41646. DOI: https://doi.org/10.1016/j.heliyon.2025.e41646

L. M. Hillscher et al., "Influence of TEMPO-oxidation on pulp fiber chemistry, morphology and mechanical paper sheet properties," Cellulose, vol. 31, no. 5, pp. 3067–3082, Mar. 2024. DOI: https://doi.org/10.1007/s10570-024-05748-5

V. A. Barbash, O. V. Yashchenko, A. S. Gondovska, and I. M. Deykun, "Preparation and characterization of nanocellulose obtained by TEMPO-mediated oxidation of organosolv pulp from reed stalks," Applied Nanoscience, vol. 12, no. 4, pp. 835–848, Apr. 2022. DOI: https://doi.org/10.1007/s13204-021-01749-z

A. S. Madival, S. Maddasani, R. Shetty, and D. Doreswamy, "Influence of Chemical Treatments on the Physical and Mechanical Properties of Furcraea Foetida Fiber for Polymer Reinforcement Applications," Journal of Natural Fibers, vol. 20, no. 1, Apr. 2023, Art. no. 2136816. DOI: https://doi.org/10.1080/15440478.2022.2136816

C. Meng, J. Yang, B. Zhang, and C. Yu, "Rapid and energy-saving preparation of ramie fiber in TEMPO-mediated selective oxidation system," Industrial Crops and Products, vol. 126, pp. 143–150, Dec. 2018. DOI: https://doi.org/10.1016/j.indcrop.2018.09.030

J. H. Rantepadang et al., "Mechanical properties analysis of pineapple leaf fiber with various TEMPO oxidation levels," in International Conference On Innovations In Computing And Applications (ICICA-24), Jaipur, India, 2025, p. 020024. DOI: https://doi.org/10.1063/5.0234680

K. Raja, B. Prabu, P. Ganeshan, V. S. Chandra Sekar, and B. NagarajaGanesh, "Characterization Studies of Natural Cellulosic Fibers Extracted from Shwetark Stem," Journal of Natural Fibers, vol. 18, no. 11, pp. 1934–1945, Nov. 2021. DOI: https://doi.org/10.1080/15440478.2019.1710650

Q. Sun et al., "Effect of lignin content on changes occurring in poplar cellulose ultrastructure during dilute acid pretreatment," Biotechnology for Biofuels, vol. 7, no. 1, Dec. 2014, Art. no. 150. DOI: https://doi.org/10.1186/s13068-014-0150-6

B. Jordanov, D. Tsankov, and E. H. Korte, "Peculiarities in the stretching vibrations of the methylene groups," Journal of Molecular Structure, vol. 651–653, pp. 101–107, Jun. 2003. DOI: https://doi.org/10.1016/S0022-2860(02)00632-4

S. C. Edington, J. C. Flanagan, and C. R. Baiz, "An Empirical IR Frequency Map for Ester C═O Stretching Vibrations," The Journal of Physical Chemistry A, vol. 120, no. 22, pp. 3888–3896, Jun. 2016. DOI: https://doi.org/10.1021/acs.jpca.6b02887

Y. Zakaria, S. Sukarni, P. Puspitasari, N. Mufti, S. Anis, and A. Johari, "Investigate the Potential Renewable Energy of Microalgae Spirulina sp Using Proximate Analyzer, SEM-EDX, and Thermogravimetry," Journal of Mechanical Engineering Science and Technology (JMEST), vol. 6, no. 2, Nov. 2022, Art. no. 66. DOI: https://doi.org/10.17977/um016v6i22022p066

A. Hassan, M. R. M. Isa, Z. A. M. Ishak, N. A. Ishak, N. A. Rahman, and F. M. Salleh, "Characterization of sodium hydroxide-treated kenaf fibres for biodegradable composite application," High Perform Polym, vol. 30, no. 8, pp. 890–899, Jul. 2018. DOI: https://doi.org/10.1177/0954008318784997

N. A. Ghazali, K. M. Salleh, N. F. Jafri, K. A. M. Khalid, S. Zakaria, and N. H. A. Halim, "The dispersibility of Cellulose I and Cellulose II by tempo-mediated oxidation," CERNE, vol. 30, 2024, Art. no. e-103320. DOI: https://doi.org/10.1590/01047760202430013320

R. Qu, M. Tang, Y. Wang, D. Li, and L. Wang, "TEMPO-oxidized cellulose fibers from wheat straw: Effect of ultrasonic pretreatment and concentration on structure and rheological properties of suspensions," Carbohydrate Polymers, vol. 255, Mar. 2021, Art. no. 117386. DOI: https://doi.org/10.1016/j.carbpol.2020.117386

Downloads

How to Cite

[1]
M. P. Renandito, “Modification of Sugarcane Bagasse Fiber: A Comparative Study of Alkali and TEMPO Treatments”, Eng. Technol. Appl. Sci. Res., vol. 15, no. 3, pp. 22394–22400, Jun. 2025.

Metrics

Abstract Views: 365
PDF Downloads: 430

Metrics Information